CSIT 2018 INTERNATIONAL PROGRAMME COMMITTEE

Yu. Bobalo	Conference Honorary Chairman, Lviv Polytechnic National University, Ukraine
M. Medykovskyy	Conference Executive Chairman , Lviv Polytechnic National University, Ukraine
V. Stepashko	Chairman of International Workshop on Inductive Modelling , International Research and Training Centre for Information Technologies and Systems of the NAS and MES of Ukraine
M. Andriychuk	IEEE MTT/ED/AP/CPMT/SSC, West Ukraine Chapter, Ukraine
M. Andriychuk	MTT/ED/AP/CPMT/SSC West Ukraine Chapter, Ukraine
P. Antonov	Technical University of Varna, Bulgaria
A. Arkhangelska	Palacky University in Olomouc, Czech Republic
R. Bazylevych	Lviv Polytechnic National University, Ukraine
P. Bidyk	National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
O. Bisikalo	Vinnytsia National Technical University, Ukraine
V. Boyun	Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Ukraine
A. Camacho	Universidad Complutense de Madrid, Spain
G. Chetverikov	Kharkiv National University of Radioelectronics, Ukraine
T. Czachorski	Institute of Theoretical and Applied Informatics Polish Academy of Sciencesh, Poland
J. Cardiff	Institute of Technology Tallaght (ITT), Ireland
P. Cañizares	Universidad Complutense de Madrid, Spain
Z. Čekerevac	"Union - Nikola Tesla" University in Belgrade, Serbia
R. Danel	Technical University of Ostrava, Ostrava, Czech Republic
M. Dyvak	Ternopil National Economic University, Ukraine
R. Dupas	University of Bordeaux, France
D. Fedasyuk	Lviv Polytechnic National University, Ukraine
V. Filatov	Kharkiv National University of Radioelectronics, Ukraine
E. Gelenbe	Electrical and Electronic Engineering at Imperial College, London, United Kingdom
O. Gozhyj	Petro Mohyla Black Sea State University, Ukraine
J. Gospodarczyk	University of Economy, Bydgoshch, Poland
Y. Haxhimusa	Vienna University of Technology, Austria

I

M. Korablyov	Kharkiv National University of Radioelectronics, Ukraine
Ye. Krasowski	Polish Academy of Sciences Branch in Lublin, Poland
N. Kunanets	Lviv Polytechnic National University, Ukraine
O. Levchenko	Lviv Polytechnic National University, Ukraine
P. Lipinski	Technical University of Lodz, Poland
M. Lobur	Lviv Polytechnic National University, Ukraine
V. Lytvyn	Lviv Polytechnic National University, Ukraine
L. Novak	University of Zilina, Slovakia
V. Pasichnyk	Lviv Polytechnic National University, Ukraine
A. Pawlak	Silesian Univercity of Technology, Gliwice, Poland
B. Prasad	Florida A&M University, Tallahassee, USA
D. Puchala	Lodz University of Technology, Poland
Y. Rogowski	Technical University of Lodz, Poland
P. Rosso	Polytechnic University of Valencia (UPV), Spain
D. Scheller-Boltz	Universitat Innsbruck, Austria
C. Seifert	Passau University (PU), Germany
L. Sikora	Lviv Polytechnic National University, Ukraine
N. Shakhovska	Lviv Polytechnic National University, Ukraine
V. Shyrokov	Ukrainian Language-Informational Centre, NASU, Ukraine
J. Spalek	University of Zilina, Slovakia
Z. Szymanski	Spoleczna Akademia Nauk, Poland
S. Telenyk	National Technical University of Ukraine "Kyiv Polytechnic Institute", Ukraine
R. Tkachenko	Lviv Polytechnic National University, Ukraine
I. Tsmots	Lviv Polytechnic National University, Ukraine
F. Vashchuk	University of Central Europe in Skalica
V. Yakovyna	Lviv Polytechnic National University, Ukraine
A. Yarovyi	Vinnytsia National Technical University, Ukraine
S. Yurish	Technical University of Catalonia, Barcelona, Spain
V. Zakharov	Saint Petersburg State University (SPbSU), Russia
J. Žižka	Mendel University in Brno, Czech Rep
M. Yatsymirskyy	Lodz University of Technology, Poland
A. Yerokhin	Kharkiv National University of Radioelectronics, Ukraine

CSIT 2018 ORGANIZING COMMITTEE

Mykola Medykovskyy	Chairman, Director of Institute of Computer Sciences and Information Technologies of Lviv Polytechnic National University, Ukraine
Tetiana Shestakevych	Conference Secretary. ISN Department, Lviv Polytechnic National University, Ukraine
Natalia Shakhovska	Publication Chair. AIS Department, Lviv Polytechnic National University, Ukraine
Olena Vovk	Treasurer. AIS Department, Lviv Polytechnic National University, Ukraine
Veretennikova Natalis	Member, ISN Department, Lviv Polytechnic National University, Ukraine
Olexa Skorohoda	Member, ASC Department, Lviv Polytechnic National University, Ukraine
Vasyl Dubuk	Member, ASC Department, Lviv Polytechnic National University, Ukraine
Max Seniv	Member, SW Department, Lviv Polytechnic National University, Ukraine
Iryna Yurchak	Member, CAD Department, Lviv Polytechnic National University, Ukraine
Zoriana Rybchak	Member, ISN Department, Lviv Polytechnic National University, Ukraine
Oleh Basystiuk	Member, ISN Department, Lviv Polytechnic National University, Ukraine
Iryna Zavuschak	Member, ISN Department, Lviv Polytechnic National University, Ukraine

III

PREFACE

Welcome to XIIIth International Scientific and Technical Conference **Computer Sciences and Information Technologies** CSIT 2018, which is organized by IEEE Ukraine Section, IEEE West Ukraine AP/ED/MTT/CPMT/SSC Societies Joint Chapter, Lviv Polytechnic National University, Institute of Computer Science and Information Technologies, supported by Technical University of Lodz Poland, Institute of Information Technologies, patronized by Ministry of Education and Science of Ukraine.

The international conference **Computer Sciences and Information Technologies**, established in 2004, is annually organized with the principal aim to discuss modern trends in computer sciences, information technologies, applied linguistics, and others related areas. To achieve this goal, various aspects of computer science will be presented in such major topics:

- Artificial Intelligence;
- Computational Intelligence;
- Computer vision;
- Information modeling of database and knowledge systems;
- Intelligence control systems and technologies;

- Computational linguistics;
- Project Management;
- Cyber-physical systems;
- Software Engineering;
- Intelligent management technologies.

CSIT 2018 Program Committee evaluated over 260 submitted papers to crystallize a high-level technical program of oral presentations. To continue previous successful practice, CSIT 2018 hosts three international scientific workshops: *International Workshop on Inductive Modelling IWIM-2018*, *International Workshop on Project Management IWPM 2018*, and *International Workshop on Information modeling, Data and knowledge engineering IWIMDKE 2018*, all supported by IEEE.

The sincerest, boundless gratitude of organizers is sent to members of International Program Committee, who supported CSIT 2018 conference by participating in it, their comprehensive reviews allowed the conference to participate in the promotion of science and technological excellence. It should be proudly mentioned, that some papers are common for several institutions, and even countries, involved in the conference. Such examples of international cooperation, that we have noticed in papers, submitted this year, has inspired CSIT 2018 International Program Committee and Organizing Committee to encourage the cooperation – even in preparing this book of Conference proceedings. As you may see, the cover of this book is decorated with a watercolor of Lviv Polytechnic National University main building. This work belongs to Victoria Halimurka – the graduate student of Department of Design and Architecture

Fundamentals, Institute of Architecture of Lviv Polytechnic National University. This watercolor painting, among other students' works, was prepared at this year's Scientific Festival, organized by Lviv Polytechnic National University. We thank Victoria and wish all the best in her future achievements, and hope that such cooperation will set a new tradition in Computer Sciences and Information Technologies conference organization.

Conference CSIT 2018 and satellite Workshops will be held in Lviv which is the largest city in Western Ukraine and the seventh largest city in the country overall. The historical heart of Lviv city is famous for its old buildings. The city center is on the UNESCO World Heritage List. Lviv is one of the most important cultural centers of Ukraine, famous for art, literature, music and theatre. It hosts more than 100 festivals annually, has 60 museums and 10 theatres. With regard to its urban fabric and architecture, Lviv is an outstanding example of the fusion of the architectural and artistic traditions of Central and Eastern Europe with those of Italy and Germany. The CSIT 2018 conference will be held in early autumn, and Lviv will be at its best: the city is famous for its welcoming and hospitality, its beautiful parks, diverse cuisine, fascinating history and charismatic architecture. Please, be sure of our warmest gratitude for you interest and participation in the conference.

We are looking forward to welcoming you in Lviv and at CSIT 2018!

Sincerely yours,

Millfund

Lviv 2018

Mykola Medykovskyy Director of Institute of Computer Sciences and Information Technologies of Lviv Polytechnic National University, Ukraine CSIT 2018 Executive Chair

COMPUTATIONAL LINGUISTICS SECTION	
1. Synonymic Connections of Cognitive Verbs in English and Ukrainian Language Applied Aspect	s: .1
Iryna Karamysheva, Roksolana Nazarchuk, Maryna Fedoruk	
2. Authorship Attribution by Differentiation of Phonostatistical Structures of Styl	es
	.5
Iryna Khomytska, Vasyl Teslyuk	
3. Method of Textual Information Authorship Analysis Based on Stylometry	.9
Victoria Vysotska, Vasyl Lytvyn, Mariya Hrendus, Solomiya Kubinska, Oksana Brodyak	
4. Encoding of natural language information on the basis of the power set	.17
Oleg Bisikalo, Yuriy Ivanov, Nataliia Karevina	
5. Application of Saaty Method while Choosing Thesaurus View Model of the "Sn city" Subject Domain for the Improvement of Information Retrieval Efficiency.	art .21
Kunanets Nataliia, Matsiuk Halyna	
6. The methodology of frequency dictionaries to the instructions to medical produ	cts.
(based on trilingual corpus)	.26
Roksolana-Yustyna Perkhach, Yuliia Shyika	
7. The preliminary stage of the algorithm for detecting information and psycholog	ical
manipulation in online communities	.30
Andrij Peleschyshyn, Zoriana Holub, Ivanna Holub	
8. Authorship Identification of the Scientific Text in Ukrainian with Using the	
Lingvometry Methods	.34
Victoria Vysotska, Olga Kanishcheva, Yuliia Hlavcheva	
9. Identifying specific roles of users of social networks and their influence methods	;
	.39
Andriy Peleshchyshyn, Oleksandr Markovets, Volodymyr Vus, Solomiia Albota	42
10. A Model of Description of Grammar by Modified Algebra of Algorithms	.43
11 Discourses Summer die a Frankrigen in Ultrainen a Sumfingert Augebrait of Traitten	
11. Discourses Surrounding reminism in Okraine: a Sentiment Analysis of Twitter	17
Data	.4/
12 Opentitative Equivalence Level In Poetry Translation	51
12. Quantitative Equivalence Level III Poetry Translation	.51
13 Application of computer technologies in concentual analysis	55
Natalija Romanyshyn	.35
14 Optimization of the Mathematical Model of Factors of Composite design of	
Infographic	58
Oleksandr Tymchenko, Svitlana Vasiuta, Orest Khamula	.50
15. The "Individual workbench for a cornus linguist" information system	.62
Volodymyr Pasichnyk, Natalija Kunanets, Ivan Kozak	

INTERNATIONAL WORKSHOP ON INFORMATION MODELING, DATA AND KNOWLEDGE ENGINEERING

16. Mathematical model of people cooperation in social groups in the context of election
Andriv Romba Kunanets N.E. Vuriv Turbal Volodymyr Pasichnyk
17 Information Technologies of Internet Devices and BigData in the "Smart Cities"
Projects 72
Duda Oleksii Matsiuk Oleksandr Karninski Mikolai Veretennikova Natalija Kunanets Natalija
Pasichnyk Volodymyr
18 Learning Analysis as a Tool for Predicting Student Performance 76
Volodymyr Verhun Anatoliy Batyuk Volodymyr Voityshyn
10 Ontological Approach In The Formation Of Effective Pipeline Operation
Procedures
Volodymyr Pasichnyk, Vasyl Lytyyn, Nataliia Kunanets, Roman Voynyanka, Yuriy Bolyubash,
Antonii Rzheuskyi
20. Method of adapting content by the volume of transmitted information on the
Internet
Victor A. Krisilov, Katherine Gorodnichaya, Ngoc Huy Vu
21. Methods of searching for association dependencies in multidimensional databases
Mykola Fisun, Hlib Horban, Mykhailo Dvoretskyi
22. Information Taxonomy and Ontology for Situational Management
Oleksii Kovalenko
23. Model of the effectiveness of Google Adwords advertising activities
Grzegorz Szymanski, Piotr Lipinski
24. Numerical Simulation and Analysis of Systems with Memory Based on Integro-
differentiation of Fractional Order102
Yaroslav Sokolovskyy, Maryana Levkovych, Olha Mokrytska, Yaroslav Kaplunskyy
25. Content Monitoring Method for Cut Formation of Person Psychological State in
Social Scoring106
Liliya Chyrun, Iaroslav Kis, Victoria Vysotska, Lyubomyr Chyrun
26. Model of Touristic Information Resources Integration According to User Needs 113
Jun Su, Vasyl Lytvyn, Victoria Vysotska, Anatoliy Sachenko, Dmytro Dosyn
27. Structural Anomaly Matrix as a New Instrument for Evaluating the Topology of
Complex Networks in the Context of the Big Data Analytics117
Artem Potebnia
28. Ontology Application in Context of Mastering the Knowledge for Students123
Taras Lendyuk, Oksana Bodnar, Sergey Rippa, Anatoliy Sachenko
29. Methods of Statistical Research for Information Managers127
Roman Kaminskyi, Nataliia Kunanets, Antonii Rzheuskyi, Andrii Khudyi
30. Ant Colony Optimization for Matching Class Diagrams
Mojeeb Al-Rhman AL-Khiaty
31. Prospects for Using Cloud Data Warehouses in Information Systems136
Nataliya Boyko, Nataliya Shakhovska

32. The Informational Analytical Technologies of Synthesis of Optimal Spatial	
Configuration14	0
Sergiy Yakovlev, Oleksii Kartashov, Kyryl Korobchynskyi	
33. The application of AntConc concordanger in linguistic researches	4
Nataliia Kunanets, Olena Levchenko, Anna Hadzalo	

INTERNATIONAL WORKSHOP ON PROJECT MANAGEMENT

34. The Blended Mental Space: Mobility and Flexibility as characteristics of
project/program success148
Sergey Bushuyev, Olena Verenych
35. Discrete-event modeling of the critical parameters of functioning the products of
infrastructure projects at the planning stage152
Oleh Zachko, Dmytro Kobylkin
36. The Project Management Methodology and Guide Formation's Method156
Igor Kononenko, Svitlana Lutsenko
37. Sustainability and agility in project management: contradictory or complementary?
Vladimir Obradović, Marija Todorović, Sergey Bushuyev
38. Selective Dissemination of Information as a Communication Tool for E-Science
Users165
Antonii Rzheuskyi, Nataliia Kunanets, Nataliia Veretennikova, Roman Vaskiv
39. Application of the Lean startup methodology in project management at launching
new innovative products169
Nataliia Veretennikova, Roman Vaskiv
40. Approach to the creation of a comprehensively competent project-oriented
organization
Voitenko Oleksandr, Timinsky Alexander
41. Building information modeling. A management tool for Smart City
C. Mgbere, V.A.Knysnenko, A.B. Bakirova 12 Emotional intelligence in project management in the transition to a behavioral
42. Emotional intelligence in project management in the transition to a behavioral
Pusen Nadija Pushuvay Sargay
43 Decision making by the analysis of project risks based on the FMFA method 187
Kritsky D N Druzhinin F A Pogudina O K Kritskava O S
44. Managing the energy-saving projects portfolio at the metallurgical enterprises 191
Kivko Sergev, Druzhinin Evgeniv, Prokhorov Oleksandr
45. 3-Level Approach to the Projects Planning
Pavlo Teslenko, Svitlana Antoshchuk, Dmytro Bedrii, Hanna Lytvynchenko
46. Information Support Of The Virtual Research Community Activities Based On
Cloud Computing
Kazarian Artem, Roman Holoshchuk, Nataliia Kunanets, Volodymyr Pasichnyk, Antonii
Rzheuskyi
47. Recommendation System "Virtual Reference"
Antonii Rzheuskyi, Nataliia Kunanets, Mykola Stakhiv

48. Anticipative Approach to Project Management for the Creation of Distributed
Information Systems
Viktor Morozov, Olena Kalnichenko, Iuliia Liubyma
49. Model of organizational innovative development management cycles on the basis of
knowledge, competences and values211
Kutsenko Maryna, Boyko Evgeniya
50. Information Analysis of Procedures for Choosing a Future Specialty Using
Cognitive Cards
Volodymyr Pasichnyk, Mariia Nazaruk, Nataliia Kunanets, Nataliia Veretennikova, Ruslan
Nebesnyi
51. Advisory System «Admission» for College Graduates221
Krupa S. M, Kunanets N.E.
52. IT Projects Management Driving by Competence226
Natalia Bushuyeva, Denis Bushuiev, Victoriia Busuieva, Igor Achkasov
53. Reduction in discrete optimization problem230
S. K. Chernov, L. S. Chernova, S. D. Titov
54. Management Priority of ICT Projects in Programme of Development Organization
in Complex Dynamically Varying Environment
Igbal Babayev, Jahid Babayev
Authors index

123

Ontology Application in Context of Mastering the Knowledge for Students

Taras Lendyuk Ternopil National Economic University 3, Peremoha Square, Ternopil 46020 Ukraine tl@tneu.edu.ua

Oksana Bodnar Ternopil Volodymyr Hnatiuk National Pedagogical University 2, Maxyma Kryvonosa str., Ternopil 46027 Ukraine bodnarotern@ukr.net

Abstract—Authors proposed to construct the fuzzy ontology of the academic discipline taking into account the educational material content, its complexity characteristics' and studying time. Proposed approach is based on the individual learning path using the fuzzy logic tool. Fuzzy rules, developed in MatLab environment, are applied in Protégé ontology editor using the Fuzzy OWL plugin. That enabled to implement the fuzzy ontology constructing of individual learning path for the academic discipline in education domain.

Keywords—individual learning path, fuzzy logic, fuzzy ontology, learning management system

I. INTRODUCTION

In the stage of students training is important to use modern methods and tools for students studying in IT education. At the same time, it should be noted that the training of the teaching material for learning management systems (LMS) and its semantic construction in the metadata storage requires the individual formation of educational material and the movement of students on it. In addition, e-learning materials created in different LMSs are often incompatible, due to their different formats. Problematic tasks include the excessive duration of testing and training of LMS [3].

Adaptive learning improves the educational process and provides an additional opportunity to take advantage of information technology implementation [21]. The adaptive LMS gives for a student the educational material constructing the individual learning path in accordance with intermediate test results. So, the learning individualization is important, when the student is provided with theoretical material, exercises for theory learning, instructional materials for exercises fulfilling according to student individual characteristics [1].

During the individual learning path constructing it is necessary the specify of main discipline's components – lectures, practical classes, labs, and other educational Sergey Rippa University of State Tax Service 31, Universytetska Street, Irpin, 08201 Ukraine rippa_serg@ukr.net

Anatoliy Sachenko ^{1,2)} ¹⁾ Kazimierz Pulaski University of Technology and Humanities in Radom, Poland sachenkoa@yahoo.com 2) Ternopil National Economic University 3, Peremoha Square, Ternopil 46020 Ukraine as@tneu.edu.ua

materials [3]. It makes a possibility to use ontology that provides efficient distributed access to learning resources by creating the unified knowledge base that unites academic disciplines and can be placed in the Internet. The last one makes it independent of interpreting a particular educational process [6]. As a result, the learning system works as the intelligent agent which makes selection from the knowledge base or changes it depending on the context and semantics of the described ontology for the specific training courses [5].

At present time, ontology is used together with fuzzy logic approach to eliminate uncertain information in various fields, for example, to search documents or to select learning objects for study [8].

During placing the LMS on educational Web-portal using MOODLE, the ontological approach has a number of advantages [3]. So, the actual research topic is the knowledgeoriented formation of the individual learning path to support adaptive learning using the elemental fuzzy logic and semantic web technologies in ontology environment.

II. RELATED WORKS

A definition of the learning path is considered in works [2-4].

Creation of e-LMS with the individual learning path, oriented on the semantic web, enables solving the problem of syntactic compatibility [13, 24]. However, such compatibility is not sufficient for organization of interaction between different LMS in the Internet. The reason is that the same information can be syntactically presented differently, and as a result, it may use different barriers between LMS. There are no LMS that may solve such problem at practice with representing the domain, namely using a taxonomy describing the ontology [12]. Paper [25] is devoted to coreference resolution in ontology population. Paper [26] considers problems of goal driven ontology learning.

Ontology of the discipline includes the following categories: general information (name, content, authors, index,

and glossary of terms), description of the course, sequence of lectures, lectures, laboratory and practical work, list of references [16]. Papers [15, 18-22] are devoted to use of the ontologies and semantic Web in e-learning. One of the possible solutions for uncertain data processing is to ensure the fuzzy logic inclusion into ontology [6, 7, 11]. Currently the fuzzy logic application in ontology [8-10]. Authors consider the Some researched fuzzy logic theory application in ontology [7, 8, 11].

The goal of this paper is constructing the individual learning path on the base of course ontology using fuzzy logic.

III. PROPOSED ONTOLOGY OF DISCIPLINE

In accordance with the lecturer tasks that use the e-LMS, he/she needs a detailed list of portal documents related to each other at a semantic level that would allow using the document's semantic content of LMS documents to make proper management actions. The base of such documents scheme preparation is the ontological binding of categories and documents properties to convey the semantic content of responses to the requests of different user's groups.

To create a learning object that is oriented towards the semantic web, it is necessary to determine correctly (not excessive) the taxonomy (concepts) of educational activity, as well as the properties of concepts and the relationship between concepts. To describe the internal structure of concepts, the attributes of the template documents, defined by the normative provision of education, should be used. To bind internal ontology to each other and from the root ontology, it is possible to use the ontology mapping and Ontology Web Language (OWL) [23] with the equivalence between categories and properties. It can indicate that a given class or property in some ontology is equivalent to classes or properties of another ontology.

Web-ontology is based on classes and objects and their properties and constraints meaning that objects are the set of entities with certain properties. This essence has some relations and all of them make groups by their characteristics. Therefore, full objects description, as well as the domain are represented as a hierarchical knowledge base, that enables to perform "smart" operations, for example, as semantic search and determining reliability and integrity of data [15]. However, in [5] the learning object complexity is described shortly without analytical background.

Authors proposed to improve the approach [5] using the fuzzy logic for reasoning the Complexity of Learning Object and introducing in the learning object ontology the additional category "Type of Learning Object" (see Fig. 1).

Fig. 1 shows the interconnection of basic notations. So, the lecturer is the developer of the academic course, and the academic course is developed by the lecturer. The lecturer is the developer of the lecture, and the lecture is developed by the lecturer. The lecture contains learning objects, and the learning objects are components of lecture. The learning objects are studied by the student, and the student studies the learning objects. The student answers the questions of the test, which contains answers. The learning objects contain the theoretical material, exercises, tables, formulas, reports, and they are integral parts of the learning material.

Fig. 1. Improved ontology of the learning object

We consider the complexity at adaptive learning as the integral part of an individual learning path and it can be determined using the fuzzy logic [17]. In fuzzy logic sets for mathematical model's construction it is needed to formalize linguistic information with the help of the linguistic variables notation which is words or expressions. Linguistic values are terms, and a set of all possible terms forms a term-set [17].

A trapezoidal function is used as a membership function for terms of input variables (Fig. 2), for example, learning object complexity. The feasibility of trapezoid fuzzy intervals using is conditioned by the ease of their operations performing and their visual graphic interpretation.

Fig. 2. The membership function for input variables terms.

In general, the membership function can be described by a function $\mu^{A}(u): U \rightarrow [0,1]$ that enables, for each element u of the universal set U, to calculate the degree of its membership to the fuzzy set \tilde{A} . The universal set U contains a complete set of values that covers the entire problem region [11].

For calculations, we use the formula corresponding to the trapezoidal membership function. As a result, a system of equations for calculating the values of the membership function per each term of the input variables is obtained:

$$\mu_{ns}(a) = \begin{cases} 1; a \le 40\\ \frac{55-a}{40}, 40 \le a \le 55 \end{cases}, \quad \mu_{s}(a) = \begin{cases} 0; a \le 65 \text{ or } a \ge 95\\ \frac{75-a}{60}, 60 \le a \le 75 \\ 1; 70 \le a \le 80\\ \frac{95-a}{80}; 80 \le a \le 95 \end{cases}$$
$$\mu_{vs}(a) = \begin{cases} 0; a \le 45 \text{ or } a \ge 85\\ \frac{60-a}{45}, 45 \le a \le 60\\ 1; 60 \le a \le 70\\ \frac{85-a}{70}; 70 \le a \le 85 \end{cases}, \quad \mu_{v}(a) = \begin{cases} 0; a \le 80\\ \frac{95-a}{80}, 80 \le a \le 95 \\ 1; 90 \le a \le 100 \end{cases}$$

where $\mu_{ns}(a)$ – the membership function for the complexity lower than average;

 $\mu_{c}(a)$ – membership function for medium complexity;

 $\mu_{vs}(a)$ – membership function for the complexity higher than average;

 $\mu_{v}(a)$ – a membership function for high complexity.

The fuzzy knowledge base of the fuzzy system for constructing the individual learning path has two inputs: "Level of student knowledge" and "Complexity of a learning object" and one output – "Time for study a learning object".

The category Type of Learning Object contains the following data: basic knowledge, a theoretical material, the advanced theoretical material, the additional explaining material, practical tasks.

IV. CASE STUDY AND IMPLEMENTATION OF PROPOSED APPROACH

For simulation of fuzzy knowledge base, we used the Fuzzy Logic Toolbox – a package of applied software that is a part of MatLab environment. On the base of this package, a system of fuzzy logical reasoning and fuzzy classification is created.

On the basis of this package, a system of fuzzy logical conclusion and fuzzy classification was created. The base of fuzzy knowledge system of individual learning path fuzzy formation has two inputs: "Level of student knowledge" and "Complexity of the learning object" and one output – "Time to learning object study." Fuzzy system used is based on the Mamdani fuzzy conclusion tool.

The linguistic variable "Student Knowledge Level" contains the terms {Low; Lower than average; Average; Higher than average; High}. The linguistic variable "The complexity of learning object" contains the terms {Lower than average; Average; Higher than average; High}. The linguistic variable "Time to learning object study" contains the terms {Small; Average; Long}.

Operation of the proposed fuzzy system of individual learning path constructing depends on the rules base. Since each input variable is given by a different number of membership functions and taking into account the impossibility of situation where the input variable is not specified, the rule base consists of 35 "if – then" rules. Fuzzy rules are developed in MatLab environment and then they are used in Protégé ontology editor, to construct a discipline fuzzy ontology.

During fuzzy system design it is necessary to consider the values of input and output variables, as well as to develop correct rule base, which will be followed by fuzzy reasoning.

The fuzzy knowledge base developed in MatLab environment can be used in Protégé ontology editor. This Fuzzy OWL plugin is used for this one. Implementation of the fuzzy ontology for constructing of an individual learning path for the course "Decision Theory" is given below.

Fig. 3 shows individuals of the ontology of individual learning path. Here is a basic explanatory teaching material that is simultaneously explanatory, for those students who did not understand the basic element. Also, the figure depicts its complexity and the time of study. Fig. 4 shows the fuzzy ontology of an individual learning path using calculations on system of equations (1).

Fig. 3. Individuals of the ontology of individual learning path

D PuzzyWineOntology (http://www.semantic.wsb.o	shrfologes:C011/10PuzzyWesCriptogy.mvl)	sauce to setty
e Ontwoge Entitles Classes Oligect Properties Dat	Properties Annotation Properties Individuals ONLINE OL Query OntoDiral Fucty OVIL SP	ARQL Query Ontology Offerences
V Owk		Available Available Convergentiation (Convergentiation)
Neru		· arrestore O
zy Delwype		Annatations (10
Step 1	Step 2	Anatzani 🔘
Select the datatype to annotate	Otopas type and parameters	
Diter a datatype name	Type	
		Constant Constant Constant Constant
Addrew debtype		Later 000
ComplexityLow	A 25	<tazyowd tuzytype="satatype"></tazyowd>
ComplexityAverage	# 30	*Uschype spec trapezoidar ac 2.5 tic 3.0 cc 3.5 d+ 4.2 />
 TimeAverage 	C 35 0' a b c d x	<3u20962*
ComplexityHigh ComplexityHighAverage	p 40	Annutations (D)
TimeLow	M 50	- Andden O
 TimeHigh 	K2 5.0	
	Annatate	m Complexity Average for zivi abel "vfs rzzy Dwi
		fuzzyType=\"datatype\">
		Characype Cype=) trapezoida() a=) 21

Fig. 4. Fuzzy ontology of the individual learning path

Also, it can be seen there an annotation of Learning Object Complexity. In particular, the example of defining the linguistic variable "learning objects with a level of complexity below average" is given with a following membership function:

<AnnotationAssertion>

<AnnotationProperty IRI="#fuzzyLabel"/>

<IRI>#ComplexityBelowAverage</IRI>

<Literal datatypeIRI="&rdf; PlainLiteral">< fuzzyOwl2 fuzzyType=" datatype" >

<Datatype type="trapezoidal" a=2.0; b=2.5; c=3; d=3.5; />

</fuzzyOwl2></Literal>

</AnnotationAssertion>

Experimental studies have confirmed that the time of learning material study depends on the student knowledge level and the complexity of the learning material. In particular, the

125

implementation of an individual learning path in Protégé using the Fuzzy OWL plug-in at study of the disciplines "Decision Theory" and "Information and Knowledge Management". The sample size was 120 persons, and there were 40 test tasks.

The results of experimental studies confirmed the correctness of the scientific provisions, since the introduction of the fuzzy ontology of individual learning path construction reduces the learning time by 20% compared with the known approaches. The results proved to be commensurate, as different students and different levels of knowledge study in different groups and specialties, and test questions are simple and complex, regardless of specialty.

V. CONCLUSIONS

The fuzzy rules base, developed in MatLab environment, has applied in the Protégé ontology editor using the Fuzzy OWL plugin. This enabled implementing the fuzzy ontology for constructing the individual learning path in the academic discipline Decision Theory for the IT education domain.

An adaptive learning algorithm was developed and programmed to implement the navigation in the network of learning objects with selecting the educational fragments according to their type. It has been experimentally confirmed that the proposed approach enables to reduce the time of student studying, with the number of educational fragments of the complexity certain level and student's level in 20%.

REFERENCES

- T. Lendyuk, S. Rippa, "Information portal of e-learning system in semantic web environment," in Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS'2011, Prague, Czech Republic, 2011, vol. 2, pp. 637-641.
- [2] R. Hosseini, P. Brusilovsky, "A comparative study of visual cues for adaptive navigation support," in Proceedings of the 27th ACM Conference on Hypertext and Social Media, HT'16, 2016, pp. 323-325.
- [3] C. De Medio, F. Gasparetti, C. Limongelli, F. Sciarrone, M. Temperini, "Course-driven teacher modeling for learning objects recommendation in the Moodle LMS," in Proceeding of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP'17, 2017, pp. 141-145.
- [4] P. Karampiperis, D. Sampson, "Performance evaluation of decisionbased content selection approaches in adaptive educational hypermedia systems," in Intelligent and Adaptive Educational-Learning Systems, Springer Berlin Heidelberg, pp. 161-182, 2013.
- [5] T. Lendyuk, A. Melnyk, S. Rippa, I. Golyash, S. Shandruk, "Individual Learning Path Building on Knowledge-based Approach," in Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS'2015, Warsaw, Poland, 24-26 September 2015, pp. 949-954.
- [6] F. Bobillo, U. Straccia, "Aggregation operators for fuzzy ontologies," Applied Soft Computing, vol. 13, issue 9, pp. 3816–3830, 2013.
- [7] À. García-Cerdaña, E. Armengol, F. Esteva, "Fuzzy description logics and t-norm based fuzzy logics," International Journal of Approximate Reasoning, vol. 51, issue 6, pp. 632-655, 2010.
- [8] G. Gottlob, A. Hernich, C. Kupke, T. Lukasiewicz, "Stable model semantics for guarded existential rules and description logics," in Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning, 2014, pp. 258-267.

- [9] N. Díaz Rodríguez, M. P. Cuéllar, J. Lilius, M. Delgado Calvo-Flores, "A fuzzy ontology for semantic modelling and recognition of human behaviour," Knowledge-Based Systems, vol. 66, pp. 46-60, 2014.
- [10] G. Stoilos, G. Stamou, J.Z. Pan, "Fuzzy extensions of OWL: logical properties and reduction to fuzzy description logics," International Journal of Approximate Reasoning, vol. 51, pp. 656–679, 2010.
- [11] L. A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets and Systems, no. 1), pp. 3-28, 1999.
- [12] T. Terano, K. Asai, M. Sugeno, Applied Fuzzy Systems, Academic Press, 2014.
- [13] F. Bobillo, U. Straccia, "Fuzzy ontology representation using OWL 2," International Journal of Approximate Reasoning, vol. 52, issue 7, pp. 1073–1094, 2011.
- [14] T. Tudorache, C. Nyulas, N. F. Noy, M. A. Musen, "WebProtégé: A collaborative ontology editor and knowledge acquisition tool for the web," Semantic Web, IOS Press, vol. 4, issue 1, pp. 89-99, 2013.
- [15] J. Ohler, "The semantic web in education," EDUCAUSE Quarterly, vol. 31, issue 4, pp. 7-9, 2008.
- [16] Standard for Learning Object Metadata. Piscataway, NJ, USA (2002). [Online], Access mode: http://ltsc.ieee.org/wg12/files/ LOM_1484_12_1_v1_Final_Draft.pdf.
- [17] N. Vasylkiv, L. Dubchak, T. Lendyuk, I. Turchenko, I. Shylinska, M. Aleksander, "Tasks distribution for students testing based on fuzzy logic," in Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS'2017, Bucharest, Romania, 2017, pp. 26-29.
- [18] S. Cakula, M. Sedleniece, "Development of a personalized e-learning model using methods of ontology," Procedia Computer Science, vol. 26, pp. 113-120, 2013.
- [19] N. Manickasankari, D. Arivazhagan and G. Vennila, "Ontology based semantic web technologies in e-learning environment using Protégé," Indian Journal of Science and Technology, vol. 7, no. S6, pp. 64-67, October 2014.
- [20] M. Čarapina, O. Staničić, B. Nožica, "The semantic web technologies and their integration within e-learning systems: an overview," in Proceedings of the 6th International Conference of Education, Research and Innovation ICERI'2013, 18-20 November 2013, Seville, Spain, pp. 3796-3801.
- [21] P. Bouquet, A. Molinari, "Using semantic technologies in e-learning platforms: a case study," in Proceedings of the International Conference on E-Learning in the Workplace ICELW'2016, New York, June 15-17, 2016, pp. 1-6.
- [22] A. Stathaki, H. Kondylakis, E. Marakakis, M. Kalogerakis, "i-Prolog: a web-based intelligent tutoring system for learning Prolog," in book Interactivity, Game Creation, Design, Learning, and Innovation, pp.337-346, 2018. DOI: 10.1007/978-3-319-76908-0_32.
- [23] OWL Web Ontology Language, [Online] https://www.w3.org/TR/owlfeatures/.
- [24] S. Maslovskyi, A. Sachenko, "Adaptive test system of student knowledge based on neural networks," Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS'2015), Warsaw, Poland, 24-26 September 2015, pp. 940-944.
- [25] N. Garanina, E. Sidorova, I. Kononenko, S. Gorlatch, "Using Multiple Semantic Measures for Coreference Resolution in Ontology Population," International Journal of Computing, vol. 16, issue 3, pp. 166-176, 2017.
- [26] J. Chen, D. Dosyn, V. Lytvyn, A. Sachenko, "Smart data integration by goal driven ontology learning," in Advances in Big Data. Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece, pp. 283-292.