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Abstract
Multiple interactions between different pollutants in the surface waters can cause unpredictable consequences. The aim of
the study was to evaluate the combined effect of two widespread xenobiotics, titanium oxide nanoparticles (TiO2) and
bisphenol A (BPA), on freshwater bivalve Unio tumidus. The specimens were exposed for 14 days to TiCl4 (Ti, 1.25 µM),
TiO2 (1.25 μM), BPA (0.88 nM), or their combination (TiO2+BPA). Every type of exposure resulted in a particular
oxidative stress response: TiO2 had antioxidant effect, decreasing the generation of reactive oxygen species (ROS) and
phenoloxidase (PhO) activity, and doubling reduced glutathione (GSH) concentration in the digestive gland; Ti caused
oxidative changes by increasing levels of ROS, PhO and superoxide dismutase; BPA decreased the GSH level by a factor of
two. In the co-exposure treatment, these indices as well as lysosomal membrane stability were not affected. All Ti-containing
exposures caused elevated levels of metalated metallothionein (Zn,Cu-MT), its ratio to total metallothionein protein, and
lactate/pyruvate ratio. Both BPA-containing exposures decreased caspase-3 activity. All exposures, and particularly co-
exposure, up-regulated CYP450-dependent oxidation, lipid peroxidation and lipofuscin accumulation, lysosomal cathepsin
D and its efflux, as well as alkali-labile phosphates in gonads and caused DNA instability (except for TiO2). To summarize,
co-exposure to TiO2+ BPA produced an overlap of certain individual responses but strengthened the damage. Development
of water purification technologies using TiO2 requires further studies of the biological effects of its mixtures. U. tumidus can
serve as a sentinel organism in such studies.
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Introduction

Modelling the environmental impact on aquatic animals
needs to take into account multiple interactions between
different pollutants both in the water and inside of the
organisms in different unpredictable scenarios (Della Torre

et al. 2015; Fang et al. 2015). Within the xenobiotics found
in surface waters, titanium oxide nanoparticles (n-TiO2) are
arguably among the most worrisome, since they can modify
the effects of other pollutants (Baun et al. 2008). They are
manufactured worldwide in ever increasing quantities for a
wide range of applications including industry, cosmetics
(e.g., in sunscreens) and medicine (e.g., in biomedical
implants and cancer therapy) (Chen and Mao 2007; Giese
et al. 2018). A study of manufactured nanomaterial con-
centrations in the environment revealed that n-TiO2 con-
centrations are much higher than those of the other four
prevalent manufactured nanomaterials, including the nano-
nized form of Zinc oxide (ZnO) (Giese et al. 2018). The
nanonized nature of the initial n-TiO2 can change, particu-
larly in salt water, through agglomeration (Minetto et al.
2014). However, it was shown that in fresh water n-TiO2

particles are suspended in a water column of humic and
humus-poor lake waters for a long time without any
remarkable changes in the particle size, and only prone to
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aggregate and quickly settle in the brackish waters with
high salinity (Li et al. 2016). The persistence of stable
residual n-TiO2 in aquatic environments for extended peri-
ods was demonstrated by Zhang et al. (2017). At the same
time, in water, the bulk form of TiO2, derived from TiO2

pigments, can produce nanoparticles (Botta et al. 2011).
Similarly, when the presence of n-TiO2 in the surface waters
is detected, it is a technical problem to distinguish between
the manufactured nanoparticles and those naturally occur-
ring in nano-scale minerals (Gondikas et al. 2018). Due to
this variability of sources, it is difficult to precisely prove
the nature of the TiO2 particles in the surface waters.

One of the major applications n-TiO2 utilizes its unique
photocatalytic activity. It is applied to wastewater pur-
ification due to relatively low cost and high stability
(Khalilova et al. 2018). Reported effects of n-TiO2 on
various organisms are related to the generation of reactive
oxygen species (ROS), namely hydroxyl radicals, resulting
in oxidative stress and oxidative damage, the destabilization
of cell lysosome structure (Barmo et al. 2013; Diniz et al.
2013; Federici et al. 2007; Khene et al. 2017; Reeves et al.
2008). However, biological effects of n-TiO2 are frequently
studied in acute exposures (Sureda et al. 2018) or at high
concentrations of mg L−1 in the water (D’Agata et al. 2014;
Doyle et al. 2016; Federici et al. 2007). On the other hand,
the recorded concentrations of n-TiO2 in the surface waters
are at the magnitudes of ng L−1 (Sun et al. 2017), and
exposures are continuous. Nevertheless, even at 20 g L−1, n-
TiO2 was not toxic to Vibrio fischeri bacteria (measured by
the luminescence inhibition test) and crustaceans Thamno-
cephalus platyurus (measures as 24 h mortality) (Heinlaan
et al. 2008).

In a polluted environment, n-TiO2 is presumed to cause
the degradation of phenol compounds, particularly
Bisphenol A (BPA) (Banni et al. 2016; Lu et al. 2013). BPA
(2,2-bis(4-hydroxyphenyl)propane) is one of the most
widely used chemicals, for example in the production of
epoxy resins and polycarbonate plastics. Consequently, it is
a common environmental pollutant (Crain et al. 2007).
Whereas BPA is structurally similar to synthetic female
hormone diethylstilbestrol, the most expected and con-
firmed sign of its toxicity is endocrine disruption (Balbi
et al. 2017; Guo et al. 2019; Rubin 2011). In vertebrate
animals, it acts as an activator of the estrogen receptors
causing alterations in reproduction, development, metabo-
lism, immune response, and neurobehavior (Gassman
2017). In bivalve mollusks, BPA also causes numerous
changes in oxidative stress indices and lysosomal stability,
similar to the effects of estrogenic compounds (Canesi et al.
2007). BPA affects the mollusks at low concentrations, in
the range of ng L−1 to µg L−1, while in fish most effects
were detected at much higher concentrations (Aarab et al.
2006; Canesi et al. 2007; Oehlmann et al. 2009). At the

same time, BPA concentrations used in experimental
models usually exceed environmentally realistic levels
(Aarab et al. 2006; Crain et al. 2007).

Bivalve mollusks are on the first line of impact from
nanoparticles and soluble aquatic effluents due to their
suspension-feeding and sedentary lifestyle (Canesi and
Corsi 2016; Doyle et al. 2016). Populations of freshwater
bivalves are declining dramatically all over the world (Geist
2011; Lopes-Lima et al. 2017; Lydeard et al. 2004). In
particular, this decline is corroborated by the authors’ own
research evaluating the impact of environmental toxicity on
the bivalves in the basin of Dnister, the second largest river
in Ukraine (Falfushynska et al. 2009; Mischuk and Stoliar
2009). While Unio tumidus is a widely distributed and
abundant European bivalve and a keystone species in its
ecosystems, the populations of this mollusk are in sustained
decline (Weber 2005).

The aim of this study was to compare the effects of TiO2

and BPA in individual and combined exposures of fresh-
water bivalve mollusk Unio tumidus. Based on the expected
biochemical effects of these substances, we selected a broad
range of markers to study. They included the markers of
oxidation/reduction state that are known to be affected by n-
TiO2 (Federici et al. 2007; Reeves et al. 2008). We also
evaluated metallothionein concentrations as thiols and
metal-buffering molecules (Amiard et al. 2006; Krezel and
Maret 2007). Metabolic trends were determined based on
the lactate/pyruvate ratio; cathepsin D activity served to
estimate the extent of autophagy, which can be induced by
metabolic disorders (Benes et al. 2008; Man and Kanne-
ganti 2016; Ursini et al. 2016). Lysosomal membrane sta-
bility was studied because of its known vulnerability to the
manufactured nanoparticles (Canesi and Corsi 2016; Diniz
et al. 2013). We measured vitellogenin-like proteins (alkali-
labile phosphates (ALP)) involved in gametogenesis (Gagné
and André 2011). The extent of cellular lesions was verified
by determination of DNA instability and the activity of key
apoptotic executive enzyme caspase-3. We aimed to track
the responses caused by individual TiO2 and BPA expo-
sures in the combined exposure effects to determine the
mode of the possible interaction.

Materials and methods

Chemicals

All chemicals were purchased from Sigma Aldrich (St.
Louis, USA) and SinbiaS (Ukraina) and were of the
Reagent grade or higher. The Titanium (IV) oxide, mixture
of rutile and anatase, nanoparticles, <150 nm particle size
(volume distribution, DLS), dispersion, 33–35 wt% in H2O
(CAS Number: 13463-67-7, EC Number 236-675-5, Sigma
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Aldrich) was utilized. A stock suspension of 1 g L−1 was
prepared by dispersing n-TiO2 powder into deionized water,
vortexing of the suspension for 20 s and ultrasonication for
about 10 min. The obtained stock suspension was diluted to
the final concentration in the experimental medium. The
size of nanoparticles in the aquatic medium was confirmed
by DLS on DynaPro NanoStar (Wyatt Technology, Santa
Barbara, USA) instruments and photon correlation spectra
using the non-invasive back scatter (NIBS) technology at
25 °C (S1 Appendix). The samples for DLS measurements
were prepared by dissolution of commercial substance in
the bi-distilled water, pH 6.5–7.0, samples were 5, 10, 25,
50, 75 and 100 µg L−1. The solutions for DLS study were
kept 24 h before the measurement.

Experimental exposures

Bivalve mollusks Unio tumidus (Unionidae) (~6 years old,
8 ± 1 cm length, and 42 ± 5 g weight) were collected in early
autumn in the pristine site. This forestry site is located in the
upstream portion of river Seret (near the village Ivachiv, 49°
49/N, 25°23/E), West Ukraine, where no industrial con-
tamination was expected. Specimens were acclimated to the
laboratory conditions for up to seven days in the 80 L aerated
tanks. After that they were distributed randomly among five
groups (15 specimens each). One group was exposed to the
aquarium water only and was considered control (C). Other
groups were subjected to 14-day exposure to TiCl4 (Ti,
1.25 µM), TiO2 (1.25 μM that corresponding to 100 µg L−1),
BPA (0.88 nM that corresponding to 200 ng L−1), and
combined exposure (TiO2+BPA). These concentrations
were approximated to ecologically realistic ones or to those
approved in other experiments with bivalves. The con-
centration for TiO2 was the same that was used by Canesi
et al. (2014). Predicted n-TiO2 concentrations in the EU and
Switzerland respectively, were 16 and 32 µg L−1 in sewage
treatment plant effluents, and 0.53 and 0.67 µg L−1 in surface
waters (Sun et al. 2017). Reported concentrations of BPA are
less than 21 μg L−1 in stream/river water samples, and less
than 17.2 mg L−1 in landfill leachate (Crain et al. 2007).

The utilizing of the exposure to TiCl4 for the comparison
of the effect of titanium-contained compounds was moti-
vated by its applying for the chemical treatment of waste-
water and surface water with the transformation to TiO2 in
aquatic phase (Lee et al. 2009). Low toxicity of TiCl4 in the
aquatic environment was indicated with no observed effect
concentration to Daphnia magna such high as 100 mg L−1

(Lee et al. 2009).
The exposure time 14 days was chosen as the minimal

period for the acclimation in the particular environment.
The sufficiency of this period was shown in different studies
with aquatic species (Federici et al. 2007; Falfushynska
et al. 2015, 2018). No mussel mortality was observed

during the experimental exposures. During the trial, water
was changed and chemicals were replenished every two
days. Mollusks were fed commercial food (“Aquarius”,
Ukraine) prior to each water change.

After exposure, mollusks were dissected on ice. The
procedure for hemocyte isolation was based on a protocol
described in Binelli et al. (2009). For all biochemical traits,
except chromatographic analysis, digestive glands, gonads
and hemolymph samples were prepared from eight indivi-
dual mollusks in each experimental group. For the chro-
matographic analysis, tissue samples of equal size were
collected from five individuals in each experimental group,
pooled together, and analyzed in triplicate. Each procedure
of tissue sampling was carried out at 4 °C. Hemolymph was
studied immediately, while all other samples were kept in a
freezer (–40 °C) until the time of measurement. Lysosomal
membrane stability was determined in hemocytes, levels of
ALP—in gonads, and all other characteristics—in the
digestive gland. Protein concentration in the samples was
measured by the method of Lowry et al. (1951), using
bovine serum albumin as the protein standard.

Biomarker assays

Methodology used for each biomarker was described in our
previous works (Falfushynska et al. 2015, 2018) and given
in detail in S2 Appendix.

Oxidoreductase activities and oxidative lesions assays

Superoxide dismutase (SOD, EC 1.15.1.1) activity was
measured according to the method of Beauchamp and Fri-
dovich (1971). The phenoloxidase-like (PhO) activity of
tyrosinase (EC 1.14.18.1) was determined by recording the
formation of o-quinones (Luna-Acosta et al. 2011).
Microsomal CYP450-dependent ethoxyresorufin O-dee-
thylase (EROD) activity was measured in the microsomal
pellet obtained by calcium precipitation of the post-
mitochondrial supernatant (Cinti et al. 1972) by checking
the formation of resorufin at 572 nm (Klotz et al. 1984). The
rates of oxyradical (ROS) formation in supernatant were
determined using a fluorescent dye dihydrorhodamine
which is converted by ROS to the fluorescent dye
rhodamine-123 (Viarengo et al. 1999). Lipid peroxidation
(LPO) was determined by the production of thiobarbituric
acid-reactive substances (TBARS) (Ohkawa et al. 1979).
Lipofuscin accumulation was determined from the detecting
of its fluorescent signal (Manibabu and Patnaik 1997).

Redox balance and metabolic characteristics

Reduced glutathione (GSH) and oxidized glutathione
(GSSG) concentrations were quantified by the glutathione
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reductase recycling assay (Anderson 1985). Redox index of
glutathione (RI GSH) was calculated as the ratio of con-
centrations of GSH/GSSG. Lactate and pyruvate levels
were determined spectrophotometrically by the monitoring
of changes in NADH concentration in the corresponding
incubation mixture (Gawehn 1988). The ratio of the con-
centrations of Lactate/Pyruvate was calculated. Con-
centration of the gonad alkali-labile phosphates (ALP)
related to the lipophosphoprotein vitellogenin was mea-
sured in the gonads according to the protocol of Gagné
et al. (2003).

Isolation and quantification of metallothioneins

Metalothioneins (MTs) from the digestive gland were iso-
lated as the thermostable proteins by size-exclusion chro-
matography on Sephadex G-50 (Roesijadi and Fowler
1991) with necessary adjustments needed to avoid their
oxidation. The fractions with high absorbance at 254 nm
and high D254/D280 density ratio were identified as putative
MTs-containing peaks and pooled (totally 10 mL) for the
metal determination. Total concentration of metallothio-
neins (MT-SH) was assessed in the 1/10 w/v homogenates
individually for each specimen by the concentrations of
thiols using DTNB reduction method (Viarengo et al.
1997).

Metal determination

The concentrations of zinc and copper (Zn and Cu) were
measured in the pooled eluate of metallothionein-containing
fractions from the size-exclusion chromatography (10 mL)
after the digestion of the samples with HNO3 by the atomic
absorption spectrophotometry. Concentration of the meta-
lated metallothioneins (Zn,Cu-MT, μg g−1 FW) was calcu-
lated from the concentrations of metals in these samples,
considering that one metallothionein molecule with molar
weight 7 kg mol−1 binds seven Zn2+ ions or 12 Cu+ ions by
its two thiolate domains (Amiard et al. 2006).

Lysosomal markers

Lysosomal membrane stability was determined by the
Neutral Red Retention (NRR) assay, according to a pro-
cedure developed for isolated mussel hemocytes and
adopted to freshwater mussels (Marchi et al. 2004).
Cathepsin D (EC 3.4.23.5) activity was determined with
1% hemoglobin as substrate as described by Dingle et al.
(1971). Free (extralysosomal) cathepsin D activity was
assessed in the digestive gland tissue homogenate without
detergent addition, whereas the total cathepsin D activity
was measured after the enzyme release by Triton X100
treatment.

Assays of DNA instability and apoptosis

DNA damage was evaluated by the levels of protein-free
DNA strand breaks (DNAsb) in the digestive gland by the
alkaline DNA precipitation assay (Olive 1988) using
Hoescht 33342 dye as described by Bester et al. (1994).
Caspase-3 activity was assayed colorimetrically based on
the detection of the colored product of hydrolysis p-
nitroaniline (pNA) (Bonomini et al. 2004).

Statistical analysis

The data are presented as means ± standard deviation (SD)
unless indicated otherwise. Data were tested for normality
and homogeneity of variance by using
Kolmogorov–Smirnoff and Levene’s tests, respectively.
Whenever possible, data were normalized by Box–Cox
common transforming method. For the data that were not
normally distributed even after the transformation, non-
parametric tests (Kruskall–Wallis ANOVA and
Mann–Whitney U-test) were performed. Principal compo-
nent analysis (PCA) was used to differentiate the individual
specimens by the set of their indices. Pearson’s correlation
test for the pairs of variables was performed at a 0.05 level
of significance. All statistical calculations were performed
with Statistica v. 10.0 and Excel for Windows-2010. Dif-
ferences were considered significant if the probability of
Type I error was less than 0.05. All graphics were per-
formed using GraphPad Prism 6.

Results

Oxidoreductase activity and oxidative damage

The exposures affected the oxidative stress indices (Fig. 1).
Ti elevated SOD and PhO activities and increased the level
of ROS production. Conversely, TiO2 decreased ROS pro-
duction and PhO activity. EROD activity was substantially
elevated in all exposed groups, particularly as a result of
TiO2+ BPA co-exposure (by 2.9–7.0 times). The levels of
lipofuscin and TBARS formation were also elevated in all
exposed groups, up to 1.54 times by nTiO2+ BPA and 2.47
times by Ti correspondingly.

Thiols and redox state characteristics

The level of GSH in the digestive gland increased twice
after the exposure to TiO2 and halved after exposure to BPA
(Fig. 2a), while the level of GSSG increased after exposures
to Ti, TiO2, and BPA (Fig. 2c). In the group exposed to
BPA, these changes resulted in a dramatic decrease of GSH/
GSSG ratio (by 3.4 times), however in other exposed
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groups redox state of GSH was comparable to the control
value (Fig. 2e).

The total level of metallothionein (MT-SH) decreased
in all titanium-containing exposures and did not change
after exposure to BPA (Fig. 2b). On the other hand, the
level of metalated metallothionein (Zn,Cu-MT) increased
after the exposures to Ti, TiO2, and TiO2 + BPA, and was
similar to control in the BPA-exposed group (Fig. 2d).
Consequently, the ratio of MT-SH/Zn,Cu-MT decreased
in the mussels exposed to Ti, TiO2 and TiO2 + BPA
(Fig. 2f).

All titanium-containing exposures resulted in increased
level of lactate and decreased level of pyruvate (Fig. 3a),
while the exposure to BPA resulted in substantial increase
of pyruvate level (~by twice) (Fig. 3b). As a result, the
lactate/pyruvate ratio increased in all groups exposed to
titanium compounds, and particularly so after the exposure

to TiO2 (by ~three times) and decreased after exposure to
BPA (~ by twice) (Fig. 3c).

All exposures caused an increase in ALP level in the
mussel gonad, with BPA and TiO2+ BPA co-exposure
resulting in the largest increase (in more than three times)
(Fig. 3d).

Indices of toxicity

DNA instability increased after all exposures except in the
case of TiO2 (Fig. 4a). Caspase-3 activity decreased after
exposures to BPA and TiO2+BPA and was similar to
control after other exposures (Fig. 4b).

Total Cathepsin D activity and its efflux from lysosomes
increased compared to the control in all exposures (Fig. 4c,
d). A substantial decline in lysosomal membrane stability
(by 43%) was detected after exposures to TiO2 and BPA,

Fig. 1 The oxygen-related
enzyme activities and indices of
oxidative stress in the digestive
gland of Unio tumidus exposed
to TiCl4 (Ti), n-TiO2, BPA and
n-TiO2+BPA in comparison
with the control (C). Data for a
superoxide dismutase (SOD)
activity; b ROS; c
ethoxyresorufin O-deethylase
(EROD) activity; d
phenoloxidase-like (PhO)
activity; e lipofuscin
accumulation; f thiobarbituric
acid-reactive substances
(TBARS) production, presented
as mean ± SD (N= 8). If the
letters above the bars are the
same, this indicates that the
values do not differ significantly
(P > 0.05)
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while the TiO2+ BPA co-exposure did not produce this
result (Fig. 4e).

Data integration

Pearson correlation analysis revealed multiple associations
among the studied indices (Table 1). All oxidoreductase
activities (SOD, PhO, EROD) were interrelated (except for
the EROD–PhO pair) and positively correlated with the
indices of oxidative damage (ROS, TBARS, Lipofuscin,
except ROS–Lipofuscin pair). All abovementioned char-
acteristics of oxidative stress (SOD, EROD, PhO, ROS,
TBARS and Lipofuscin) were highly associated with
cathepsin D activity (both total and extra lysosomal (free)).
The indices of oxidative stress and toxicity (TBARS,
Lipofuscin, DNAsb, Cathepsin D total and free, EROD)
positively correlated with ALP level in gonads, and some of

them (ALP, EROD, Lipofuscin, DNAsb, Cathepsin D free)
negatively correlated with the caspase-3 activity.

The indices of redox balance (lactate, lactate/pyruvate
ratio, GSH, GSH/GSSG ratio) had positive inter-
correlations and positive correlations with Zn,Cu-MT
levels, while all of them negatively correlated with pyruvate
levels and MT-SH/Zn,Cu-MT ratio. Levels of oxidor-
eductases correlated oxidative damage on the one hand, and
redox-related parameters on the other. Thus, lactate posi-
tively correlated with EROD, PhO, and TBARS; Zn,Cu-
MT: positively correlated with TBARS; MT-SH negatively
correlated with TBARS and lipofuscin levels; GSH nega-
tively correlated with SOD, ROS and DNA instability.
Lysosome membrane stability (NRR test) correlated nega-
tively with lipofuscin accumulation and positively with
PhO, MT-SH and the MT-SH/ Zn,Cu-MT ratio. The largest
number of correlations was found for TBARS (13), lactate

Fig. 2 Glutathione and
metallothionein concentrations
in the digestive gland of Unio
tumidus exposed to TiCl4 (Ti),
n-TiO2, BPA and n-TiO2+ BPA
for 14 days, in comparison with
the control (C). Data for a GSH;
b metallothionein protein (MT-
SH); c GSSG; d metalated
metallothionein (Zn,Cu-MT); e
GSH/GSSG ratio, f MT-SH/Zn,
Cu-MT ratio of means,
presented as mean ± SD (N= 8
for all indices except Zn,Cu-MT,
N= 3 for Zn,Cu-MT sampled
from 5 specimens in the group).
If the letters above the bars are
the same, this indicates that the
values do not differ significantly
(P > 0.05)
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(11), cathepsin D total (11), and GSH (10). Fewer correla-
tions were uncovered for caspase-3 (4) and GSSG (5).

According to the results of Principal component analysis
(Fig. 5), 54.3% of variation of indices was attributed to
Factors 1 and 2. All treatment groups were separated from
the control along the Factor 1. The locations of Ti and TiO2

+ BPA groups overlapped, forming a tight cloud opposite
control group along Factor 1. The position of TiO2 and BPA
groups was opposite relative to the Factor 2 and most dis-
tant from the position of control group.

Discussion

Comparison of the responses to TiO2 and TiCl4
exposures

Titanium is the ninth most abundant element in the Earth’s
crust, however there is no known essential role for it in the
biology of any organism (Zierden and Valentine 2016).
Bioavailability of this metal likely depends on its chemical
forms found in the environment. Furthermore, for nano-
particles the bioavailability expected to have common reg-
ularities (Christian et al. 2008). However, a study of TiO2

suspensions in various humic acids and NaCl concentra-
tions in sublethal doses on zebrafish Danio rerio did not
demonstrate a correlation between aggregation size,

hydrodynamic diameter of particles and oxidative stress
indices (Fang et al. 2015).

In this study, we found certain common features in the
responses of the mussels independent of titanium form in
the medium. First, the analysis of metallothionein levels
have shown similar responses for all titanium containing
exposures, namely the increase in metallothionein metala-
tion (Zn,Cu-MT) combined with the decrease of protein
metallothionein (MT-SH) concentration. The increase of
metallothionein concentration is a typical sign of metal
toxicity (Amiard et al. 2006). However, the data on the
effect of titanium compounds on metallothionein con-
centration is limited and contradictory. In a study of
Mutilus galloprovincialis, acute exposure to TiO2-con-
taining sunscreen led to a progressive, dose-dependent
increase in metallothionein concentration (MT-SH) in the
gills (Sureda et al. 2018). On the other hand, TiO2 brought
down MT-SH level in the gills of M. galloprovinciales,
previously elevated as a result of cadmium exposure (Della
Torre et al. 2015). In the study of D’Agata et al. (2014),
significant overexpression of the inducible mt20 gene was
detected in the digestive gland of M. galloprovincialis
exposed to bulk TiO2, while TiO2 nanoparticles (fresh and
aged) did not change the expression of mt genes in this
tissue. Moreover, the data on the expression of mt genes in
the gills and results of histochemical analysis were
inconclusive.

Fig. 3 Lactate a and pyruvate b
concentrations and their ratio c
in the digestive gland and ALP
concentration in gonads d of
Unio tumidus, exposed to TiCl4
(Ti), n-TiO2, BPA and n-TiO2+
BPA for 14 days in comparison
with the control c. Data
presented as mean ± SD (N= 8).
If the letters above the bars are
the same, this indicates that the
values do not differ significantly
(P > 0.05)
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Total and metalated metallothionein concentration assays
are rarely combined in the same study (for analysis see
Falfushynska et al. 2015). The discrepancies between MT-
SH and Zn,Cu-MT levels are usually related to the increase
in apo-form (Duncan et al. 2006; Krezel and Maret 2007;
Ruttkay-Nedecky et al. 2013; Falfushynska et al.
2015, 2018). The opposite trend, i.e. the hypermetalation of
metallothioneins, observed in this study for all titanium-
containing treatments, can be explained by a well-known
unique protein-binding behavior of titanium (IV): its ability
to polymerize through oxo bridges (Rozes et al. 2006),
providing the additional metal binding by metallothioneins
(Sutherland et al. 2012). This attribute of titanium (IV) is,
for instance, utilized in anticancer therapy (Wang et al.
2013). In a recent study, TiO2 was demonstrated to strongly

interact with different cellular proteins, selective to specific
amino acid side chains (Ranjan et al. 2018).

The elevated lactate levels and lactate/pyruvate ratio
were also detected in all groups exposed to titanium con-
taining substances, in contrast to the BPA-exposed group.
This suggests the presence of a reduced state within the
cells as a result of NADH accumulation (Sies 2015; Ursini
et al. 2016) and, consequently, a high redox state of the thiol
groups. Importantly, all redox balance indices (the lactate
and GSH levels along with lactate/pyruvate and GSH/
GSSG ratios) were positively correlated with Zn,Cu-MT
and negatively correlated with pyruvate and GSSG levels.
This demonstrated that the cells generally sustained the
reduced state in all groups exposed to titanium-containing
substances independently of the extent of oxidative stress.

Fig. 4 Characteristics of toxicity
in digestive gland a–d and
hemocytes e of Unio tumidus,
exposed to TiCl4 (Ti), n-TiO2,
BPA and n-TiO2+BPA for
14 days in comparison with the
control c. Data for a DNA-
strand breaks; b caspase-3
activity; c cathepsin D total
activity; d cathepsin D free
(outside lysosome) activity; e
lysosomal membrane stability,
presented as mean ± SD (N= 8).
If the letters above the bars are
the same, this indicates that the
values do not differ significantly
(P > 0.05)
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The main differences in the effects between the TiO2 and
Ti exposures are underscored by the analysis of oxidative
stress responses. Induced oxidative injury is the most
recognized manifestation of nanoparticle toxicity, including
TiO2 nanoparticles (Fu et al. 2014; Kim et al. 2019). The
ability of TiO2 to directly induce the production of ROS can
be explained by their photocatalytic activity (Zoltan et al.
2016). It was demonstrated in the experimental exposures to
UV radiation and several in vitro studies (Geiseler et al.
2012; Moriyama et al. 2018). TiO2-mediated generation of
ROS, induction of oxidative stress and oxidative damage
were also confirmed in several animal models (Barmo et al.
2013; Della Torre et al. 2015; Diniz et al. 2013; Federici
et al. 2007; Khene et al. 2017; Reeves et al. 2008). In
particular, TiO2, found in various concentrations in the soil,
caused an increase in ROS generation, corresponding
changes in antioxidant levels and oxidative damage in the
snail Helix aspersa (Khene et al. 2017). In the mussels M.
galloprovincialis, lipid peroxidation was a result of acute
exposure to sunscreen containing n-TiO2 (Sureda et al.
2018). However, these studies utilized high concentrations
of nanoparticles and/or acute exposures.

In contrast, in this study, TiO2 was the sole agent that
produced a distinct antioxidant effect, decreasing ROS
generation and PhO activity. It was the only treatment that
resulted in increased (by the factor of two) GSH con-
centration. Studies indicate that the genotoxic effect of TiO2

is triggered by ROS production (Trouiller et al. 2009; Pet-
ković et al. 2011; El-Said et al. 2014). Therefore, preserved
DNA integrity observed in this study only in the TiO2

treatment group confirms the antioxidant effect of TiO2.
These results are corroborated by a study of zebrafish Danio
rerio larvae, exposed to 100 µg L−1 of TiO2, which also did
not induce either ROS generation or DNA damage (Fang
et al. 2015).

In mussels, PhO activity is functionally associated with
phagocytosis, self-nonself discrimination and cytotoxicity
(Luna-Acosta et al. 2011). Similar to the finding of our
study, decreased PhO activity and suppressed immune
response (reduced transcription of immune-related genes in
the digestive gland and decreased phagocytosis in the
hemocytes) were demonstrated in response of M. gallo-
provincialis to a 4-day exposure of low (1–100 µg L−1)
TiO2 concentrations (Barmo et al. 2013).

The increase in GSH concentration is likely the factor
defining TiO2 antioxidant activity. Supporting this finding,
elevated intracellular GSH levels are found to play a critical
role in the defense against TiO2 induced DNA damage in
the HepG2 human hepatoma cells (Petković et al. 2011).
We suggest that antioxidant effect of TiO2 in this study was
a result of prolonged exposure allowing the organism to
acclimate.

Among the structures most sensitive to the impact of
manufactured nanoparticles are lysosome membranes
(Barmo et al. 2013; Canesi and Corsi 2016). Indeed, we
detected the decrease of lysosomal membrane stability in
hemocytes under the exposure to TiO2. This was the main
sign of TiO2 toxicity. However, the same effect was
observed for the exposure to BPA, and therefore it cannot
serve as a distinctive feature of nanoparticle effect. The
overall response of the mussels to TiO2 exposure was
confirmed by the PCA (Fig. 5).

Of titanium compounds, its nanoform received the most
attention as a potential source of toxicity (Kim et al. 2019).
However, some studies point to a difference in effects
depending on the form. For example, histochemical analysis
of M galloprovincialis exposed to ‘bulk’ titanium dioxide
showed that it induced enhanced toxicity in comparison
with ‘fresh’ or ‘aged’ TiO2 nanoparticles in the concentra-
tions of 10 mg L−1 of each substance (D’Agata et al. 2014).
In our study, in the contrast to TiO2, exposure to Ti induced
the most severe oxidative stress response, such as up-
regulation of ROS, PhO and SOD. It also triggered the
highest level of TBARS production. Increased oxidative
damage of proteins and lipids was detected in patients with
implanted titanium alloy miniplates (Borys et al. 2018; Kim
et al. 2019). This noticeable difference in the outcomes of
two exposures to titanium compounds confirms that dif-
ferent mechanisms of their bioavailability are in play.

The effect of BPA on mollusks

In this study, we did not detect BPA-induced changes in the
oxygen-dependent enzymes and ROS generation, in con-
trast to what was reported for high micromolar concentra-
tions in the human cells (Gassman 2017). However, BPA
caused the oxidative effect through the depletion of GSH
and its increased oxidation (Fig. 2). In the BPA only

Fig. 5 Results of the principal component analysis of the studied
biological traits of U. tumidus exposed to TiCl4 (Ti), n-TiO2, BPA and
n-TiO2+BPA for 14 days in comparison with the control (C) in the
plane of two first principal components (Factors 1 and 2)
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treatment, it also produced the distinct changes of the
metabolic activity, such as elevated pyruvate level, which
can be a sign of mitochondrial dysfunction described in
previous reports (Gassman 2017). The lysosomal disin-
tegration was also indicated as a sign of BPA toxicity,
which is the same as for low BPA concentrations in the
acute exposure of M. galloprovincialis mussels (Canesi
et al. 2007). The main consequence of BPA toxicity in both
single and combined exposures was a decrease in caspase-3
level. These findings confirm mollusk sensitivity to BPA
even at low nanomolar concentrations (Oehlmann et al.
2009). The anti-apoptotic response of caspase-3 was similar
with the results reported in a study of ovarian cancer cells
(Ptak et al. 2013). Thus, the decrease in caspase-3 level is of
substantial ecotoxicological concern given the wide BPA
distribution (Cavalieri and Rogan 2010). The particular
effect after individual BPA exposure was confirmed by the
PCA (Fig. 5).

Modulations of some particular responses to TiO2
and BPA in the co-exposure

The main difference in the individual responses to TiO2 and
BPA was the opposite trend in the changes of GSH and
GSSG concentrations. Co-exposure caused mutual cance-
lation of these responses suggesting the antagonistic rela-
tionship between the two substances, TiO2 and BPA, in
their biological effects. The validity of this abolishing is
confirmed by PCA (Fig. 5). Co-exposure also resulted in
normalized lysosomal membrane stability. At the same
time, we observed the highest level of DNA strand breaks,
cathepsin D efflux from the lysosomes, and ALP level in
gonads, as well as a remarkable increase (by seven times) in
EROD activity. N-TiO2 can substantially change the beha-
vior and bioavailability of other xenobiotics (Banni et al.
2016; Canesi et al. 2014; Fang et al. 2015). For example, in
the larvae of zebrafish Danio rerio, n-TiO2, in a co-expo-
sure, increased pentachlorphenol metabolism and caused
oxidative damage and developmental toxicity, in contrast to
individual exposure (Fang et al. 2015). N-TiO2 plays a
complex role in As (V) toxicity to saltwater zooplankton
(Yang et al. 2018). The co-exposure of a marine bivalve M.
galloprovincialis to n-TiO2 and dioxin (2,3,7,8-TCDD)
produced both synergistic and antagonistic effects in the co-
exposure of the marine bivalve (Banni et al. 2016; Canesi
et al. 2014). In our study, the synergistic effect of individual
substances in the co-exposure was best reflected by the
increase in EROD activity (Fig. 1c). It can activate the
metabolic transformation of BPA to more reactive sub-
stances (Ike et al. 2000; Canesi et al. 2007). Although
EROD activity in bivalve mollusks is low in general, its
activation by aromatic substances and in the polluted

environment was observed in different studies (Siebert et al.
2017).

Nevertheless, the typical features of exposures to both of
the titanium containing compounds and BPA were also
evident as a result of co-exposure. High Zn,Cu-MT and
lactate/pyruvate levels were the most consistent manifesta-
tions of all titanium containing exposures both the indivi-
dual treatments and co-exposure. This finding underscores
the importance of detailed analysis of the redox balance
(Sies 2015), more precisely of the ‘nucleophilic tone’
(Ursini et al. 2016) caused by Ti-contained exposures. On
the other hand, the decrease in caspase-3 activity was a
salient sign of the presence of BPA in the medium, both in
the individual and combined exposures.

Shared responses to the exposures

While we included ALP in the set of markers to be ana-
lyzed, we did not expect to detect an endocrine disrupting
effect, well-known for vertebrate (Scott 2013). However, a
ALP level increase was previously reported after exposures
of mussels to BPA (Rubin 2011). This effect was observed
after a three-week exposure of Mytilus edilus females to a
concentration of BPA 250 times higher than in our study
(50 µg L−1) (Aarab et al. 2006). However, in this study, the
elevation of ALP levels in the gonads of U. tumidus cannot
be solely attributed to the effect of BPA. It seems to reflect
the increased supply of the gonad activity with phospholi-
poproteins and Zn (Gagné and André 2011) and reflect the
common biochemical response strategy to xenobiotics in U.
tumidus. This response was also observed after exposures of
this species to nano-ZnO and heat (Falfushynska et al.
2018). Additionally, the increase in ALP levels was detec-
ted in both female and male sea urchin gonads during the
nonreproductive season (Unuma et al. 2011). Low specifi-
city of this response confirms that increase in ALP levels is
not valuable biomarker of xenoestrogen effects in the
mollusks (Scott 2013; Saìnchez-Marín et al. 2017).

The activation of the oxidative injury (TBARS and
lipofuscin accumulation), CYP450-dependent oxidation and
cathepsin D in response to all exposures indicates that
freshwater bivalves possess high vulnerability to xenobiotic
impact. In our study, the numerous correlations between the
markers of oxidative damage, ALP and cathepsin D levels
conform to the general mode of response to these expo-
sures. Indeed, the substantial losses of lipids and proteins
within the cells can explain the autophagy system activation
with the involvement of cathepsin D (Turk and Stoka 2007),
either as a survival mechanism or an alternative form of
programmed cell death (Benes et al. 2008; Man and Kan-
neganti 2016). Notably, the cathepsin D was among the four
proteins highly expressed in the digestive gland of Mytilus
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edulis exposed to the toxic dinoflagellates (Manfrin et al.
2012).

Conclusion

Our results demonstrate that certain biochemical responses
observed after exposures to TiO2 and BPA as single-agent
pollutants attenuate in the co-exposure treatment combining
these two compounds. However, the indications of cellular
injury were elevated in the co-exposure treatment, raising
concern about the interaction of TiO2 and BPA in the
environment. Consequently, the development of water
purification technologies employing n-TiO2 calls for further
studies of the effects that n-TiO2 and its mixtures might
have on the biological systems. The mollusk U. tumidus
could be used as a sentinel organism for this purpose due to
its high sensitivity and response to TiO2 and BPA in
environmentally realistic exposure.
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