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ON THE CONVERGENCE OF BRANCHED CONTINUED FRACTIONS OF A SPECIAL 
FORM IN ANGULAR DOMAINS 

D. I. Bodnar1  and  I. B. Bilanyk2 UDC 517.524 

We study the angular domains of convergence of branched continued fractions of a special form with 
complex partial denominators.  By using the sufficient criterion of convergence of these fractions  
with positive elements and the Stieltjes–Vitali theorem, we establish a many-dimensional analog of the 
van Vleck convergence criterion for continued fractions, as well as some other sufficient criteria of con-
vergence under certain additional conditions imposed on the elements of fractions.  The estimates of  
the rate of convergence for branched continued fractions of special form are obtained in these angular 
domains. 

In the analytic theory of continued fractions, significant attention is given to the problem of convergence.  
Numerous criteria of convergence are formulated as the theorems on the sets of convergence.  Thus, the research-
ers consider circular, oval, parabolic, angular, and other domains of convergence.  As one of the classical criteria of 
convergence of continued fractions with partial numerators equal to one is the van Vleck criterion of conver-
gence [7, 15–17] corresponding to the convergence of continued fractions just in the angular domains. 

This theorem was generalized in [13], where various estimates for the rate of convergence of the conver-
gents were obtained.  In particular, the following assertion was proved:  

Theorem 1.  Assume that the elements of a continued fraction  

 b0 +
k=1

∞

D 1
bi

 

satisfy the conditions  

 bi ≠ 0, argbi < θ, θ < π
2 , i = 0,1,2,… . 

Then 

 (1°) there exist the finite limits of even and odd convergents; 

 (2°) the sequence of convergents  { fn}   converges iff the series  bii=1
∞∑   diverges; 

 (3°) the following estimate is true: 

 fm − fn−1 ≤ 1
dn

, m ≥ n , 
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  where   

 
 
dn ≥

ℜ(b1)
2 +ℜ(b1)

cosθ ln 1+ (ℜ(b1))
2 min 1, 1

b1
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosθ bi

i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
, n ≥ 1. (1) 

A many-dimensional analog of the van Vleck theorem for branched continued fractions (BCF) with  N   
branches was proved in [4].  A two-dimensional generalization of this theorem under other conditions imposed on 
the divergence of series formed by elements of a two-dimensional continued fraction was proposed in work [6].  
The estimate of the rate of convergence of these fractions in the angular domain was established in [10]. 

In what follows, we study BCF of a special form 

 b0 +
k=1

∞

D 1
bi(k )ik =1

ik−1
∑ , (2) 

where  b0 ,bi(k )  are complex numbers,  i(k)∈I ,  

   I = {i(k) = i1i2…ik :1 ≤ ik ≤ ik−1 ≤… ≤ i0 , k ≥ 1, i0 = N}, 

and the value of  i0   determines the dimension of the fraction.  For fractions of this kind, we establish a many-
dimensional generalization of the van Vleck theorem and estimate the rates of convergence in angular domains. 

The BCF of a special form were studied in numerous works including, in particular [1, 2, 3, 5, 8, 9, 11, 
12, 14], where the authors established analogs of the criteria of convergence of continued fractions proposed by 
Worpitzky, Pringsheim, and Leighton and Wall, parabolic theorems, etc. 

In this case, the researchers extensively used the sufficient criterion of convergence of the BCF of special 
form with positive elements proposed in [11]: 

Theorem 2.  The BCF (2) with positive elements converges if the series 

 bm[ p], m = 1,…,N
p=1

∞

∑ , 

 bi(n)m[ p], m = 1,…,N , i(n)∈I (m+1)

p=1

∞

∑ , 

where 

   I
(m ) = {i(n) = i1i2…in :m ≤ in ≤ in−1 ≤… ≤ i0 , n ≥ 1, i0 = N}, (3) 

 
 
m = 2,…,N , m[ p] = mm…m

p
!"# $# , 

are divergent. 
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By using the technique of sets of elements and sets of values, the Stieltjes–Vitali theorem [7, Theo-
rem 4.30], and a method proposed in [6], we prove the following many-dimensional analog of the van Vleck 
theorem: 

Theorem 3.  Assume that the partial denominators of the BCF (2) belong to the domain 

 
 
G ε( ) = z ∈C: z ≠ 0, arg z < π

2 − ε⎧
⎨
⎩

⎫
⎬
⎭

, (4) 

where  ε   is any positive number,  0 < ε < π
2 . 

Then 

 (1°) every n th approximation  fn   of the  BCF (2) belongs to domain (4); 

 (2°) there exist finite limits of even and odd convergents; 

 (3°) the BCF (2) converges if the series  

 
 

bm[ p] , m = 1,…,N
p=1

∞

∑ , 

   (5) 

 
 

bi(n)m[ p] , m = 1,…,N −1, i(n)∈I (m+1)

p=1

∞

∑ , 

  are divergent. 

Proof.  In view of the convexity and symmetry of domain (4) and the properties of a linear-fractional map-
ping, it is easy to set that  fn ∈G ε( )    ∀n ∈N .  

We now consider a functional BCF 

 
k=1

∞

D 1
bi(k ) z( )

ik =1

ik−1
∑ , (6) 

where   

 bi(k ) (z) = bi(k ) e
i argbi (k )z . 

If  z ∈D(ε),  where 

 
  
D ε( ) = z ∈!! : ℜ(z) < 1+ ε

π − 2ε , ℑ(z) < 1⎧
⎨
⎩

⎫
⎬
⎭

, 

then   

 bi(k ) (z)∈G ε
2

⎛
⎝⎜

⎞
⎠⎟ . 
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For a sequence of holomorphic functions   { fn (z)} ,  where  fn (z)  is the n th convergent of the BCF (6),  
n ≥ 1,  the conditions of the Stieltjes–Vitali theorem with     Δ = {z ∈!! : ℜ(z) = 0, ℑ z( ) < 1},  are satisfied in the 
domain  D(ε) . 

Let  z ∈Δ .  Then the BCF (6) can be represented in the form  

 
 k=1

∞

D 1
!bi(k )ik =1

ik−1
∑ , (7) 

where   

  
!bi(k ) = bi(k ) e

− argbi (k )ℑ(z ) . 

The “fork” property for the BCF of special form with positive elements (7) implies that its even and odd 
convergents have limits.  Therefore, by the Stieltjes–Vitali theorem, there exist finite limits of even and odd 
convergents of the BCF (2).   

The fact that series (5) are divergent implies that the series   

 !bm[ p]
p=1

∞

∑ ,     m = 1,…,N ,      and      !bi(n)m[ p]
p=1

∞

∑ ,     m = 1,…,N −1,  i(n)∈I (m+1) ,   

are also divergent.  It follows from Theorem 2 that the BCF (7) is convergent.  This means that the sequence of 
holomorphic functions   { fn (z)}   converges for  z ∈Δ .  It is clear that  Δ ⊂ D(ε) .  Hence, by using the Stieltjes–
Vitali theorem with, e.g.,  a = −1  and  b = −2 ,  we can conclude that the BCF (6) converges on any compact 
set  D ε( )  and, in particular, on the set   {1},  i.e., for  z = 1.  Thus, the BCF (2) is convergent.  

The theorem is proved.  

The next theorem enables us to estimate the rate of convergence of the BCF of special form with partial 
numerators equal to one and partial denominators that are complex numbers lying in a certain angular domain.  

Theorem 4.  Suppose that the elements of the BCF (2) satisfy the conditions 

 
 
ℜ(bi(k )) > 0, argbi(k ) < θ, θ < π

2 , i(k)∈I , (8) 

and the infinite product 

 
 

1
cosθ(1− νk )

⎛
⎝⎜

⎞
⎠⎟k=1

∞

∏ , 

where   

 

 

νk = min
ℜ(bi(k ))

bi(k ) + 1
ℜ(bi(k+1))ik+1=1

ik∑
: i(k)∈Ik

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

, (9) 
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   Ik = {i(k) = i1i2…ik :1 ≤ ik ≤ ik−1 ≤… ≤ i0 , i0 = N},       k = 1,2,3,… , 

diverges to zero.  Then the BCF (2) converges, and the following estimate of the rate of convergence is true: 

 
  
fn − f p ≤ 2N

min(ℜ(bi1 ): i1 = 1,2,…,N)
1

cosθ
⎛
⎝⎜

⎞
⎠⎟
2s

(1− νk )
k=1

2s

∏ , 

   (10) 

 n > p, s = p
2

⎡
⎣⎢

⎤
⎦⎥
. 

Proof.  In view of condition (8) and the properties of linear-fractional mappings, it is easy to see that,  
for the remainders of the n th convergents of BCF (2) 

 Qi(n)
(n) = bi(n) , n ≥ 1, 

 Qi(k )
(n) = bi(k ) +

1
Qi(k+1)

(n)
ik+1=1

ik
∑ , k = 1,2,…,n −1, n ≥ 2 , 

the following estimate is true: 

  argQi(k )
(n) < θ, k = 1,2,…,n, n = 1,2,…. 

Hence,  

 
 
Qi(k )

(n) ≥ ℜ(Qi(k )
(n) ) ≥ ℜ(bi(k ))+

cosθ
Qi(k+1)

(n)
ik+1=1

ik
∑ ,       k = 1,2,…,n −1, n ≥ 2 . (11) 

For the absolute value of the difference of convergents of the BCF (2) with  n > 2m ,  we arrive at the esti-
mate [3] 

 
 

f n− f2m ≤ 1
Qi(1)

(n)
i1=1

N

∑ … 1
Qi(2k )

(n) Qi(2k+1)
(n)

k=1
m−1∏ Qi(2k−1)

(2m ) Qi(2k )
(2m )

k=1
m∏i2m=1

i2m−1

∑
i2=1

i1
∑  

  × 1
Qi(2m )

(n) Qi(2m+1)
(n)

i2m+1=1

i2m
∑ . 

By using inequalities (11) and the fact that the function  

 y = x
b + x ,     b ≥ 0 ,   

monotonically increases, for positive values of the variable  x ,  we arrive at the estimate  
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1
Qi(2m )

(n) Qi(2m+1)
(n)

i2m+1=1

i2m
∑ ≤ 1

cosθ

cosθ
Qi(2m+1)

(n)i2m+1=1

i2m∑

ℜ(bi(2m ))+
cosθ

Qi(2m+1)
(n)i2m+1=1

i2m∑
 

  
 

≤ 1
cosθ

Qi 2m( )
(n) − ℜ(bi(2m ))

Qi 2m( )
(n)   

  

 

≤ 1
cosθ 1−

ℜ(bi(2m ))

bi(2m ) + 1
ℜ(bi(2m+1))i2m+1=1

i2m∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

  
 
≤ 1
cosθ(1− ν2m ), 

where  ν2m   is defined according to (9).  
We now perform similar analysis for the sums   

 1
Qi(k−1)

(s) Qi(k )
(s)

ik =1

ik−1
∑ ,     k = 2m ,     2m −1,…,2 ,   

where  s = 2m   if  k   is even and  s = n   if  k   is odd.  In view of the relation 

 

 

1
Qi(1)

(n) ≤
i1=1

N

∑ 2N
min
i1

ℜ(bi1 )
, 

we get: 

 

 

f n− f2m ≤ N
min
i1

ℜ(bi1 )
1

cosθ
⎛
⎝⎜

⎞
⎠⎟
2m

(1− νk ), n > 2m
k=1

2m

∏ . 

In view of the triangle inequality   

 fn − f p ≤ fn − f2s + f p − f2s ,  n ≤ p ,  s = p
2

⎡
⎣⎢

⎤
⎦⎥
,   

this yields estimate (10).  The conditions of the theorem imply that  f n− f p → 0   as  p→∞.  
The theorem is proved. 

The following assertion establishes an estimate for the rate of convergence of the BCF of special form in 
a domain, which is a subset of the angular domain (8).  
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Theorem 5.  Assume that the elements of an N -dimensional BCF (2) of special form satisfy the conditions 

 
 
ℜ(bi(k )) > δ, 0 < δ < 1, argbi(k ) < θ, θ < π

4 , i(k)∈I . (12) 

Then the BCF (2) converges and the rate of convergence can be estimated as follows: 

 fm − fNn <
MN

ln(1+αn) , m ≥ Nn , 

where  MN   and  α   are positive constants independent of  n   and  m . 

Proof.  For  N = 1,  in view of Theorem 1 and, in particular, relations (1), the convergents  fm   of the con-
tinued fractions whose elements satisfy conditions (12) can be estimated as follows:  

 dn ≥ δcosθ
2 + δ ln(1+αn), n ≥ 1, 

where   

  α = min{δ3cosθ, δcos3θ}. 

Thus,  

 fm − fn ≤ 1
dn+1

< 1
dn

< 2 + δ
δcosθ

1
ln(1+αn) , m ≥ n. (13) 

The proof of the theorem is performed by induction on the dimension  N   of the BCF. 
Let  N = 2   and let 

 fn = b0
(1,n) +

k=1

n

D 1
b2[k ]
(1,n−k ) , n ≥ 1, 

be the n th convergent of the BCF (2) in which  i0 = 2  and, in view of notation (3), 

 
 
b0
(1,n) = b0 +

ℓ=1

n

D 1
b1[ℓ]

, b2[k ]
(1,0) = b2[k ], b2[k ]

(1,s ) = b2[k ] +
ℓ=1

s

D 1
b2[k ]2[ℓ]

, 

  k = 1,2,…,n, s = 1,2,…,n −1.   

Let 

 
 

!fn = b0
(1) +

k=1

n

D 1
b2[k ]
(1)   

be the n th convergent of the continued fraction obtained as a result of the convolution of all continued fractions 
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in the BCF (2).  In other words, we get  

 
  
b0
(1) = b0 +

ℓ=1

∞

D 1
b1[ℓ]

, b2[k ]
(1) = b2[k ] +

ℓ=1

∞

D 1
b2[k ]1[ℓ]

, k = 1,2,…,n . 

These continued fractions are convergent by Theorem 3. 
We now estimate the quantities  

 
f p − !f2n ,  p ≥ 2n .  Let  

 
 
hp = b0

(1) + 1
b2[1]
(1) +…+ 1

b2[n]
(1) + 1

b2[n+1]
(1,p−n−1) +…+ 1

b2[ p]
(1,0) . 

Then the triangle inequality implies that  

 
 
f p − !f2n ≤ f p − hp + hp − !f2n . (14) 

We find  

 
 

f p − hp ≤ b0
(1,p) − b0

(1) +
b2[k ]
(1,p−k ) − b2[k ]

(1)

!Q2[s ]
( p)Q2[s ]

( p)
s=1
k∏k=1

n

∑ , 

where   
!Q2[s ]
( p)   is the s th remainder of the fraction  hp . 

We now estimate the products in the denominators of this relation.  If   k = 2ℓ,  then 

 
  

!Q2[s ]
( p)Q2[s ]

( p)

s=1

2ℓ

∏ = !Q2[2s−1]
( p) !Q2[2s ]

( p)

s=1

ℓ

∏ Q2[2s−1]
( p) Q2[2s ]

( p)  

  
  
≥ (ℜ(b2[2s ]b2[2s−1] )+1)

2

s=1

ℓ

∏ ≥ (δ2 cos2θ +1)2ℓ . 

At the same time, if   k = 2ℓ +1,  then 

 
  

!Q2[s ]
( p)Q2[s ]

( p)

s=1

2ℓ+1

∏ = !Q2[1]
( p)Q2[1]

( p) !Q2[2s ]
( p) !Q2[2s+1]

( p)

s=1

ℓ

∏ Q2[2s ]
( p) Q2[2s+1]

( p)  

  
  
≥ (ℜ(b2[1] ))

2 (ℜ(b2[2s ]b2[2s+1] )+1)
2

s=1

ℓ

∏ ≥ δ2(δ2 cos2θ +1)2ℓ . 

Hence, 

 
  

!Q2[s ]
( p)Q2[s ]

( p)

s=1

k

∏ ≥ δ1− −1( )k (δ2 cos2θ +1)
2 k

2
⎡
⎣

⎤
⎦. 
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The quantity  b2[k ]
(1,p−k ) − b2[k ]

(1)   can be estimated by using Theorem 1 and, in particular, inequality (13) ob-
tained as a consequence of this theorem: 

 
 
b2[k ]
(1,p−k ) − b2[k ]

(1) < 2 + δ
δcosθ

1
ln(1+αn) , k = 1,…,n, p ≥ 2n . 

Thus, 

 
 
f p − hp < 2 + δ

δcosθ
1

ln(1+αn) 1+ 1
δ2

+ 2
δ2

(δ2 cos2θ +1)−2k
k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟

 

  ≤ (2 + δ)A
δcosθ

1
ln(1+αn) , 

where  

 A = 1+ 1
δ2

+ 2
δ4 cos2θ(δ2 cos2θ + 2)

. 

We now estimate the second term on the right-hand side of inequality (14) by using Theorem 1: 

 
 
hp − !f2n ≤ hp − !fn + !f2n − !fn < 2

Dn
, 

where 

 
 

Dn ≥
ℜ(b0

(1))cosθ
2 +ℜ(b0

(1))
ln 1+ (ℜ(b0

(1) ))2 min 1, 1
b0
(1) 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
cosθ b2[s ]

(1)

s=1

n

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

Estimating the last quantity, we get   

 Dn ≥ δcosθ
2 + δ ln(1+αn) . 

Thus,  

 
 
hp − !f2n < 2 2 + δ( )

δcosθ
1

ln(1+αn) . 

By using the estimates presented above, we find  

 
 
f p − !f2n < 2 + δ

δcosθ (A + 2) 1
ln(1+αn) , p ≥ 2n . 
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Hence,  

  fm − f2n ≤ fm − !f2n + f2n − !f2n  

  
 
< 2 + δ

δcosθ 2(A + 2) 1
ln(1+αn)  

  = 2 + δ
δcosθ K2

1
ln(1+αn) =

M 2
ln(1+αn) , m ≥ 2n , 

where   

 M 2 = 2 + δ
δcosθ K2 ,     K2 = 2(A + 2). 

Assume that, all N -dimensional BCF of special form (2) with  i0 = N ,  where  N ≤ r −1,  whose elements 
satisfy condition (12) can be estimated as follows:  

 fm − f r−1( )n <
Mr−1

ln(1+αn) , m ≥ (r −1)n , (15) 

where 

 Mr−1 = 2 + δ
δcosθ Kr−1, Kr−1 = 4(Kr−2A +1). (16) 

We now prove the validity of estimate (15) for  N = r .  Consider the r -dimensional BCF of special form (2) 
with  i0 = r .  Its nth convergent can be represented in the form    

 fn = b0
(r−1,n) +

k=1

n

D 1
br[k ]
(r−1,n−k ) , n ≥ 1, 

where 

 
 

b0
(r−1,n) = b0 +

ℓ=1

n

D 1
bi(ℓ)iℓ=1

iℓ−1
∑ , br[k ]

(r−1,s ) = br k[ ] +
ℓ=1

s

D 1
br[k ]i(ℓ)iℓ=1

iℓ−1
∑  

are the sth convergents of all r −1( )-dimensional BCF appearing in the BCF (2);   k = 1,2,…,n −1,   s = 1,2,…,n ,  
i0 = r −1. 

By 

 f̂n = b0
(r−1) +

k=1

n

D 1
br[k ]
(r−1) , 

we denote the n th convergent of the continued fraction formed as a result of the convolution of all r −1( )-di-
mensional BCF in the BCF (2), i.e., 
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b0
(r−1) = b0 +

ℓ=1

n

D 1
bi(ℓ)iℓ=1

iℓ−1
∑ , br[k ]

(r−1) = br[k ] +
ℓ=1

s

D 1
br[k ]i(ℓ)iℓ=1

iℓ−1
∑ ,  

  i0 = r −1, k = 1,2,…,n . 

This convolution can be performed by virtue of Theorem 3.  
We now estimate the modulus of the difference  f p − f̂rn ,  p ≥ rn : 

 f p − f̂rn ≤ f p − gp + gp − f̂rn , 

where   

 
 
gp = b0

(r−1) + 1
br[1]
(r−1) +…+ 1

br[(r−1)n]
(r−1) + 1

br[(r−1)n+1]
(r−1,p−(r−1)n−1) +…+ 1

br[ p]
(r−1,0) . 

For the first term, we obtain 

 f p − gp ≤ b0
(r−1,p) − b0

(r−1) +
br[k ]
(r−1,p−k ) − br[k ]

(r−1)

Q̂r[s ]
( p)Qr[s ]

( p)
s=1
k∏k=1

r−1( )n
∑ , (17) 

where  Q̂r[s ]
( p)   is the sth remainder of the fraction  gp . 

Estimating the products in the denominators of (17) by using the reasoning similar to the reasoning used 
for  N = 2 ,  we get 

 
 

Q̂r[s ]
( p)Qr[s ]

( p)

s=1

k

∏ ≥ δ1− −1( )k (δ2 cos2θ +1)
2 k

2
⎡
⎣

⎤
⎦ . 

We now estimate the numerators in (17).  It follows from inequality (15) that  

 br[k ]
(r−1,p−k ) − br[k ]

(r−1) ≤ br[k ]
(r−1,p−k ) − br[k ]

(r−1,r−1) + br[k ]
(r−1) − br[k ]

(r−1,r−1)  

  
 
<

2Mr−1
ln(1+αn) , k = 0,…,(r −1)n, p ≥ rn . 

Hence, 

 f p − gp <
2Mr−1

ln(1+αn) A . 

Estimating the quantity  gp − f̂rn ,  by virtue of Theorem 1, we obtain  

 gp − f̂rn ≤ gp − f̂ r−1( )n + f̂rn − f̂ r−1( )n < 2 2 + δ( )
δcosθ

1
ln(1+αn) . 
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The estimates presented above and relations (16) imply that  

 f p − f̂rn < (2 + δ)
δcosθ (2AKr−1 + 2) 1

ln(1+αn) , p ≥ rn . 

Thus,  

 fm − frn ≤ fm − f̂rn + frn − f̂rn  

   
 
< (2 + δ)

δcosθ 4(AKr−1 +1)
1

ln(1+αn)  

   = (2 + δ)
δcosθ Kr

1
ln(1+αn) =

Mr
ln(1+αn) , m ≥ rn , 

where   

 Mr =
2 + δ
δcos Kr ,      Kr = 4(AKr−1 +1).  

Hence, the convergents  fk   of the N -dimensional BCF (2), where  N   is an arbitrary fixed natural number, 
satisfy the estimate 

 fm − fNn <
MN

ln(1+αn) , m ≥ Nn , 

where  MN = 2 + δ
δcosθ KN ,  N ≥ 1,  K1 = 1,  K2 = 2(A + 2),  KN = 4(KN−1A +1) ,  and  N ≥ 3.  

The theorem is proved. 

Remark 1.  The assertion of the theorem remains valid if conditions (12) are replaced by the conditions 

 (a)  ℜ(bi(k )) > 0 ; 

 (b) 
  

ℑ(bi(2ℓ)) > 0,
ℑ(bi(2ℓ+1)) < 0,

⎧
⎨
⎪

⎩⎪
   or   

  

ℑ(bi(2ℓ)) < 0,
ℑ(bi(2ℓ+1)) > 0,

⎧
⎨
⎪

⎩⎪
     ℓ = 1,2,…. 
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