доля публикаций, включающая описание водорослей увеличилясь до 5% Характерной особенностью последнего десятилетия стал рост числа исследований, посвященных оценке мелиоративного эффекта ИР. Если в начальный период исследований изучались биологические особенности заселения твердых субстратов естественного и антрополенного происхождения, например, привлечение рыб, структура сообщества обрастания и т л то с 1987 наметилась тенденция снижение доли публикаций, посвященных изучению влияния ИР на гидробионтов в пользу их воздействия на качество водной среды. В ряде публикаций обсуждается назревшая необходимость создания теорегических основ конструировяния ИР с заданными мелиоративными свойствами [3, 5]. Отмечено, что ИР обладают аттрактивными свойствами для оыб, если имсют объем не менес 2000 м³ В практике строительства ИР принято соотношение высоты рифа от глубицы его установки равное 0,1 [3] Исспедованиями школы К М Хайлова [5] была показана возможность управлять обрастанием растительных сообществ через конструкцию физического носителя. найдены количественные соотношения между фитомассой и различными показателями гсометрической организации ИР. Было показано, что с уменьшением на порядок размеров элементов конструкции ИР в диалазоне от 0,02 до 12 см³ интенсивность их взаамолействия с потоком воды увеличивается в 3 раза. Направление этия работ в последующем было продолжено В частности, выведены достоверные зависимости, связавшие биомассу и интенсивность дыхания обрастания от удельной поверхности и коэффициента упаковки поверхности ИР, уравнение, связывающее соотисшение растительного и жинотного обрастания от размеров обитаемого пространства [2], регрессиониме зависимости по определению изменении качества водной среды от физических характеристик ИР и стапени развития биообрастания [1] Успех развития деятельности по использованию ИР для улучшения качества водной повышения рыбопродуктивности прибрежной зоны моря определяется масштабами государственных дотаций. С 1984 года благодаря введению специальной поправки к федеральному закону США мыллионы долларов выделяются ежегодно на строительство ИР [7]. Объем государстаенных ютаций в Яноими на строительство ИР достиг 100 млн долдаров в год [3] С 1994 года в

Украине пачал осуществляться проект "Разработка рентабельной технологии оптимизации качества морских прибрежных вод высокотрофных и урбанизированных районов Украинского Причерноморья", посвященный разработке теоретических основ конструирования ИР.

ЛИТЕРАТУРА

- Александров Б.1. Методилогические аспекты управления качеством волной среды с помощью обрастания тверцых субсиратов //
 Экологическая безопасность прибрежной и метыфовой кои и комплексное целользование ресурсов шельфа. Севястою в,
 2000. С 351-359.
- 2. Александров Б.Г., Юрченко Ю.Ю. Зависимость структурно-функциппальных свийств морсього зоообрастания от геометрии твердых субстратов // Там же. Севастополь, $2000 \sim C/367-376$
- 3 Искусственные рифы для рыбцого хозяйства // Гез докл Всес коиф -- Москва, 1987 -- 131 с
- 4. Гехнические средства марикультуры // Сб. научи трудов Москва, 1986 198 с.
- 5 Хайлов К.М., Празукин А.В., Ковардаков С.А., Рыгалов В.Р. Функциональная морфици и морских многокисточных водорослей Киев Наук думка, 1992 280 с
- 6 Bohnsack | A., Sutherland D.L. Artificial reet research, a review with recommendations for ruture priorities # Bull. Mar. Sci. 1985.
 Vol. 37. № 1. P. 11-39.
- 7 Duedall I W , Champ M A Artificial reefs emerging science and technology / Oceanus -~ 1991 Vol 34, N 1 -- P 94-101
- 8 Stanton G. Wilber D. Murray A. Annutated bibliography of artificial reef research and management Florida State Univ., Tallahassee (USA) Sea Grant Coll. Program 1985 275 p.
- Stermle F., Stone R. Bibliography on artificial reefs / Coastal plains center for marine development services. Wilmington, North Carolina, 1973. 129 p.
- 10 White A.T., Chou L.M., De Silva M.W.R.N., Guarin F.Y. Artificial reefs for interine habitat enhancement in Southeast Asia h ICI ARM Education Series 1990 Vol. 11 45 p.

УДК 591 524,11 (262 5)

Н.А. Болтачева, Е.А. Колесникова

Институт биологии южных морей НАП Украины, г. Севастополь

БЕНТОСНАЯ ФАУНА ЛИМАНА ДОНУЗЛАВ (ЗАПАДНОЕ ПОБЕРЕЖЬЕ КРЫМА)

До 1961 г. Донузлав — это замкнутый пересоленый водоем в западном Крыму с характерной для таких озер ультрагалинной фауной. Котловина озера — речная эрозиониая долина, глубина ее достигает 28 м. Диина его — около 27 км, наибольшая ширина — 9 км. В 1961 г. озеро было соединено с морем

судоходным каналом и соленость воды в озере понизилась до уровня морской. Таким образом, в этом зимане в течение короткого временного промежутка можно проследить формирование донной фауны

Первые исследования бентоса в лимане были проведены в 1981г, через 20 лет после сто соединения с морем. Исследованиями был охвачен почти весь водоем. Обнаружено 28 видов макробентоса (группа полихет не была идентифицирована до вила), выделены сообщества, описано их распределение в акватории лимана [9]. Следующая бентосная съсмка, охватывающая большую часть тимана была выполнена в 1990 г Обнаружено 60 видов макробентоса [6], 107 видов мейобентоса [7].

В 1997 г проведены исследования в нижней части лимана (глубина –1,5-15 м), в районе, где проводится добыча песка Евпаторийским морским портом. На 29 станциях собрано 53 пробы макробентоса, 28 — мейобентоса В сборах идентифицировано 106 таксонов, 99 видов макробентоса. Среди них — 36 видов многощетинковых червей, 28 — ракообразных, 17 — брюхоногих и 16 — двустворчатых моллюсков, 1 — форонид и 1 — насекомых (личинки) 5 таксонов и 51 вид вцервые указаны для Донузлана. Среди них 22 вида полихет, 17 — ракообразных, 11 — моллюсков.

В целом для изученного водоема теперь известны 131 вид макробентоса, в том числе 46 видов полихет. 36 — ракообразных, 43 - моллюсков, 3 асцидий, 1 — форонисов, 1 — кишечнополостных, 1 — насекомых Указываются, но не идентифипированы до вида таксоны — Porifera, Hydroidea, Turbellaria, Nemertini, Oligochaeta, Nudibranchia, Bryozoa

Встает вопрос, насколько полно описана на сегодняшний день фауна макробентоса Донузлава. В северо-западной части Черного моря в 60-е годы обитало 290 видов макробентоса [1] В П Закутским [2], работалиим, в основном, в открытой части региона, было обнаружено 166 видов макробентоса. Известно, что одним из существенных факторов, обуславлнавющих полноту изученности фауны является количество сборов. М И Киселева [5] на 54-х станциях, выполненных у западного побережья Крыма обнаружила 11° видов макробентоса (грунны Nemertini, Hydroidea и Porifera не определены) П Н Золотаревым [3] были обработвны материалы с 2500 станций, собранные на протяжении 1972-1989 гг в северо-западной части моря Им идентифицировано 159 макробентосных вида, без немертин, гидроидов и губох — 129 Таким образом, списки видов у вышеперечисленных авторов сходны по количеству, несмотря на разницу в объеме материалов. Вероятно, нтоговый список видов макрофауны для Донузлава — 131 вид — можно считать достаточно полным, а фауну этого лимана виолие сформировавшейся

Остается отметить следующее — в составе фауны Доуздава не обнаружены иглокожие Возможно, это можно объяснить тем, что два массовых вида, характерных для сходных биотопов западного побережья Крыма, Адірішта stepanovi и Stereoderma kirschbergi, не имеют пелагических личинок. Вилимо, это обуславливает трудность их вселения в лиман Не обнаружены в лимане и полихеты семейства Paraonidae, хотя один представитель этого семейства Агкиdea claudiae является массовым и лаже образует одноименный биоценоз у западных берегов Крыма [5] Для этих полихет также неизвестны пелагические личинки, а взрослые стадии, видимо, не ныходят в планктон. С этой точки зрения представляют интерес черноморские брюхоногие моллюски, среди которых 13,5% — виды с непелагическим развитием [8]. Динамияа обнаружения этих видов в Донуздаве такова: 1981г — 1 вид (т.е. — 11% от общего числа обнаруженных видов гастропод). 1990 г. — 2 (18%), 1997 г. — 4 (22%) Видимо, вселение отдельных видов в лиман булет продолжаться, однако в основном, фауну этого лимана после изменения его гидролого-гидрохимического режима можно считать, в педом, вполне сформированной

Первые сведения о мейобентосе димана Донузлав приводятся в статье Н.Г Сергеевой [5] Пайдены представители основных таксономичноких групп зумейобентоса. Forammifera — 7 видов, Nematoda — 80 вядов, Ктогhyncha — 2 вида, Награсticoida — 16 видов, Асагі — 3 вида, личинки Chironomidae — 1 вид Тигbellaria. Омтасоda не идентифицированы до вида В наших исследованиях дополнен список гармактикоид — 9 видов Один массовый вид из сем Тетragonicipsidae является новым для Черного моря Всего к настоящему времени известно 116 видов мейобентосной фауны в Лимане Донузлав. Сравнивая видовой состав мейобентоса биоценозов западного побережья Крыма [4] с фауной мейобентоса лимана Донузлав, можно отметить схожие величины копичества видов. В обоих пселедованных районах число определенных видов в группах, которые идентифицировались до вида равно 109.

ЛИТЕРАТУРА

і Виноградов К.А., Лосовская Г.В., Каминская Л.Д. Краткий обзор видового состава беспозвожичных северо-зацадной части. Черного моря (по систематическим группам) / Биология северо западной части Черного моря. — Киев. Наук.думка, 1972. — С. 177-201

² Закутский В 11 Вообентос северо-занавной часяк Черного моря. Автореф дис. канд биол начк. — Одесса. 1962. — 16 с.

ГІДРОХІМІЯ І ВОДНА ТОКСИКОЛОГІЯ

- 3. Золичарся В. Н. Структура биоценозов бентали северо-западной части Черного моря и се трансформация под воздействием антропотенных факторов Дисс канд биол наук - Керчь, 1994 — 278 с
- 4. Киселева М.И. Кацественный состая и количественное распределение мелобентоса у западного побережья Кркіма // Бенгос Киев Наук думка, 1965 — С 48-61
- 5 Киселсав М.И., Славина О.Я. Донные биоценозы у Западного побережья Крыма // Тр. Севастоп биол станиии. 1964 т. 15 C 152 157
- 6 Михайдова Т.В. Макробентос озера Донувлав // Эконогия моря. 1992. Вып 42. С. 16-20.
- 7 Сергеева Н Г Мейобентос озера Донузлав // Гидробиол журн 1997 Т 33. № 4 С 32-34 8 Чухчин В Д Экология брюхоногих монлюсков Черного моря Кисв Наук думка, 1984 176 с
- 9. Чухчин В Д. Формирование донных биоценозов в оз Донузлав после соединения с морем // Многодетние изменения зообентоса 9грного моря — Киел Наук цумка 1992 — € 217-225

УДК 639.2 053 8 (262.5)

В.А. Брянцев

Южный научно-исследовате ъекий институт морского рыбиого хозяйства и оксанографии, г Керчь

МНОГОЛЕТНИЙ ПРОГНОЗ СОСТОЯНИЯ ЧЕРНОМОРСКОЙ ЭКОСИСТЕМЫ

Состояние черноморской экосистемы иллюстрируется нами с помощью многолетних рядов трех промыслово-биологических характеристик осредненной за год по восточному (глубоководному) райоку Черного моря биомассой фитопланктона (F), полученной в сезоиных съемках ЮгНИРО и опубликованной в Сиравочном пособии [3], аналогичным образом оцененной биомассой зоопланктова, значеннями уловов черноморской хамсы (У), взятыми из работы [6].

В исследуемых показателях хорошо заметны изменения биотической часли экосистемы открытой части Черного моря, где в условиях олиготрофной акватории и жестко сбалансированных трофических свірей они проявцяются особенно четко. Ряд фитоплачктона девится нами на две части, до 1974 года и начиная с нето, когда биомасса водорослей возросля я цвое по срачнению с максимальным значением преднісствующего периода и затем показала признаки аномальных вспышек (увеличение более чем на порядок) и общей нестабильности В первом (стабильном) нериоде биомассы фито- и зоопланктона значимо коррелированы (коэффициент корреляции 0.709 уровень значимости 0.004), во втором отмечаются признаки обратной связи. На нестабиньность экосистемы указывает также уведичение запаса ьороткоцикловых рыб, в частности чамсы.

Положительный тренд биотических показателей сопражен с таким же во внешних физических предпосылках. В приведенной корреляционной матрице (таблица) помещены значения коэффициентов, с уровнями значимости, не ниже 0.05, со значениями среднего атмосферного давленна (А), аитропогенного отъема пресного стока (q), вычисленного как разница между фактическим и сстественным стоком, данными в $\{4\}$, условного показателя изменения скорости вращения Земли (δ) , выраженного в доалх единицы на основе обозначений лет минимума и максимума, данных в [5], а также полученного при сложении значении указалных параметров (Αηδ) после их нормирования на амилитуду и приведения к общей размерности

1 аблица Корреляционная матрица внешних воздействий и элементов черноморской экосистемы (разьясиение симиолов в гексте).

Бистические	Внешине возрействия			
показатели	A	9	δ	Aqδ
F	0.430	0 519		
	10 032)	(0.008)		
		0 655		0 603
[Ig I		t_0 000)]	(0.001)
		0.849	0.790	0 787
У		(0.000)	(0.000)	(0 000)

В наших работах [1, 2] было показано, что безвозпратное водопотребленияе (q) и особенности атмосферной пиркуляции при повышенном среднем давлевии (А) приводят к усинению притока в фотический слой глубинных продукливных вод и увеличению трофности до уровня, определяющего