ГІДРОХІМІЯ І ВОДНА ТОКСИКОЛОГІЯ

Пайбільш інтенсивно кумулювалась в тушках риб мідь, коефідісіт накопичення якої дорівнював у коропа 642,5, у білого товстолоба — 436 2. Найменші коефіціснти накопичення були встановлені для свинию і складали 12,5 для корона та 9,3 для битого говетолоба

Отже, отримаві результати свідчать про відсутність забруднеция товарщої рибиої продукції коропа та білого товстолоба за умов вирощування у Таромському рибхозі у 2000 р. на такі важкі метали як кадмій мідь, свинець, цинь та залізо-

Показано наявнисть постийного забруднення води джере за водопостачання (р. Дніпро) цинком (перевишення ГДК у 2,7 — 2,9 рази) та сезонного — свиндем та залузом (перевишення ГДК віддовідно у 1,5 та 1,7 рази). Скидна вода містигь значно менше важких металів, що свідчить про її самоочидієння у екосистем) нагульного ставка.

ЛІТЕРАТУРА

- Медико-био югические требования и саниторно голиченические иправы качества продовольственного сырья и пиновых продуктов — М. 1990 — С. 35.
- 2 Сахаев В 1 , Щербицый 6 В Справочних по ехране окружающей среды -4 К , 1986 182 с

УДК (574, 64: 581-143): 595, 324

Э.П. Щербань, Н.А. Платопов

Институт гидробиологии НАН Украины, т. Киев

ТОКСИКОЛОГИЧЕСКАЯ ОЦЕНКА УГЛЕАММОНИЙНОЙ СОЛИ И РЕГУЛЯТОРОВ РОСТА РАСТЕНИЙ МЕТОЛОМ БИОТЕСТИРОВАНИЯ НА C. AFFINIS

В сельскохозяйственной практике наряду с различными химическими средствами защиты растений нашли широкое применение регуляторы роста расточий (РРР), которые используются для предпосевной обработки семян многих сельскохозяйственных культур, а также для опрысывания вегетирующих растений. Несмотря на то, что все РРР применяют, как правило, в очень низких пормах расхода, тем не менее оди обладают истенциальной онасностью для неплокрояных и окружающей среды. Их онасность чрезвычайно высокой биологической актинностью, значительным определяется функциональных эффектов при длительном воздействие маных доз. РРР имеют пирокую зону биологического действия, т е могут вызывать нежелательные эффекты не только при высоких, но и при низких уровнях воздействия Поэтому представляется целесообразным (в общем комплексе токсикологической оценки регуляторов ростя) исследовать и их токсичность для гипробионтов

Стандартным тест-объектом для выявления и оценки токсичности различных веществ для водных организмов является Ceriodaphnia affinis Liftjeborg - Институтом биоорганической химии НАН Украины в качестве регульторов роста растений быти представлены три вещества (утдеаммонийная соль (УАС), Триман-1 и Рост-3) для исследования ня вознействия на ракообразных. Предоставленные вещества разные по своему химическому составу. Утдеаммонийная соль представляет собой кристалды белого. серого или розового цвета. Содержит 17% азота (20,5% аммиака) и 50% утлекисного газа. Триман-1 — (аква-(N-оксид-2-метняпиридин)-марганец (II) хлорид) представляет собой кристаллы светло-серого цвета со слабым специфическим запахом. Рост-3 --- соль 3-В оксиртиламиносульфодана и пиколиновой кислоты. Мелко кристаллический порощок светло-жеттого цвета.

Проведены острые и хронические опыты. В острых опытах главным критерием токсичности РРР была смертность, в хронических — соличество потомства Ниже приведена медианная летальная концентрация исследованных препаратов для молоди цернодафний (табл. 1).

ИК_{во} геоделованных веществ для *С. affini*я, мг/п

Таблица 1

Taring Leading and Later of the Control of the Cont									
Название вещества /	Ирсия, а								
Γ	24	48	_72	96	120				
УАС	150,5	143,5	98,7	92,5	84,4				
∮рнмал-1	144,4	62,6	52,9	40,4	40,4				
Гримал-1 Рост 3	1630,0	<u>t570,0</u>	1470,0	1420,0	1400,0				

Как видно из габл 1 ЛК₅₀ препаратов для цериодафний довольно высокие, а ЛК₅₀ Роста-3 исчисляются граммовыми величинами. По принягой кнассификации исследованные препараты — практически петоксичны.

Наблюдения за жизпелеятельностью рачков в хропическом эксперименте показали совершенно иную картину На табл. 2 приведены средние шказатели копичестна питомков *C. affints*

Таблица 2
Влияцие разных концептраций УАС, Тримана-1 и Роста-3 на суммарное число потомков *C. affinis* (в % к контролю)

Название	Конценърации, мт/п										
вещества	0,0001	0,001	0,01	0 1	1,0	5.0	10,0	25,0	50,0	75,0	100,0
УАС	_	60.2	69,4	66,2	71,7	65,3	69,4	65.5	38,6	13,8	*
P, %	-	>99,9	>99,9	-99.9	>99,9	99,9د	∍ 99 9	>99,9	>99.9	599.9	
Триман 1	-	81,7	88,3	82,4	79,2	68,2	67,1	17,6	-	+	•
P. %	-	= 90	= 67	≥9 5	= 90	>95	>95	>99 9			
Poet-3	49,7	84,5	92,8	93.0	120,0	-	114,4	-	139,6	<u>.</u>	115,8
Р %	~99 , 9	<95	<95	<95	>95		>95		>95	-	>4)5

^{*} остролетальные концентрации

Как видео из табл. 2. суммарное количество потомков в опытах с УАС и Триманом-1 во всем диапазоне концентраций находилось пиже контроля. В опытах с УАС при 50-75 мг/л кончество потомков составляло 38,6-13,8% от контроля. Такое снижение показателя связано с длительным периодом созревания рачков и низким количеством помстов и молоди в н.х. Кроме того, при этих концентрациях наблюдались многочисленные нарушения репродуктивной функции цериодафний Наблюдались отклопения в развитил гонад, яиц. эмбрионов, образование ложных эфиплиумов При 75 мг/л УАС треть потомства от самок первых двух покодений составляли самцы, а у самок третьего поколения потомство на 50% состояло из самцов В развитил яиц наблюдалось отсутствие яйцевой диньки Происходито нарушение синхропности развития гонад и эмбрионоз, что в конечном втоге приводвло к гибели части потомства и снижению продуктивности вида Обычно гакие отклонения наблюдаются при воздействии многих пестицидов на ракообразных. При 0.001-25мг/л УАС суммарное число потомков бы то ниже контроля на 30-40%. По-видимому, при высоких концентрациях УАС действует на рачков как пестициды.

Концентрации 50-75мг/л Тримаца-1 для периодафний являлись остролетальными, 100% гибель рачков наблюдалась в течение 10 суток Нарушалась функция пищеварения, размножения, резко угнетался рост рачков. Про 25 мг/л суммарное количество потомков снижалось на 82,4%. Для этой концентрации характерна повышенная смертность молоди рачков, рождение большого количества самнов (54-100%). При 5-10 мг/л Тримана-1 концчество потомков снижалось на 30%, что связано с задержкой созревания рачков и снижения числи пометов и молоди в них Снижение количества потомства при 0, 001-1,0 мг/л токсиканта связано с тем, что наблюдалось угнетение показателя плодовитости самок в 1-11 поколениях В последующих поколениях наблюдалось выравнивание показателя. При работе с Триманом-1 в концентрация 5, 10 и 25 мг/д отмечено очень интересное, на наш взгляд, явление Наблюдалось ускоренное старение самых, причем не единичных особей, а большинства После 1-2 пометов выводковые камеры самок сморщивались (усыхали), иногда после линьки они полностью исчезаци, внешний вид рачков изменялся Такое ускоренное и массозое старение рачков ранее никем не отмечалось ни в одной из работ, связанных с исследованиями неорганических и органических соединсний

Что же касается препарата Рост-3, то по своему действию на цериодафиий он отличается от действия УАС и Тримана-1. Этот препарат имеет свойство присущее ранее изученным нами ростовым веществам, таким как ивил потейтии, агростимулии и др. Как видно из табл. 2, суммарное число потомства при 50 мг/л было на 40% выше конгроля. По-видимому, эту концептрацию можно отнести к стимулирующей плоповитость рачков. Суммарное писло потомков было выше контроля и при 1,0; 10,0 и 100,0 мг/л препарата, но всего на 16-20% Вместе с тем, при 0,0001 мг/л концество потомков было на 50% ниже контроля, при Р>99,9%. На 15,5% было меньше потомства и при 0,001 мг/л препарата. Здесь явно присущ эффект инверсной токсичности. Следует также отметить, что во всем диапазоне концентраций самки продуцировани большое количество самцов, чем больше они даввли потомства, тем большем был % самцов. При 50-100 мг/л самцы составлями 32,4-36,5% от потомства.

Таким образом, на основанни результатов исследования видно, что все три препарата, несмотря на разную структуру, в конечном итоге дануг один иффект, который выражается в синжении продуктивности ракообразных в большей или меньшей степени. Механизм действия препаратов, по-видимому, различен, хота эффект — один