УДК 546.32/36:577.34:597.08

В.В. Беляев, Е.Н. Волкова

Институт гидробиологии НАН Украины, г. Киев

РОЛЬ КОМПОНЕНТ ВЫВЕДЕНИЯ ¹³⁷Cs В ФОРМИРОВАНИИ РАДИОНУКЛИДНОГО ЗАГРЯЗНЕНИЯ РЫБ В ПРИДОННЫХ УСЛОВИЯХ

При рассмотрении накопления и выведения радионуклидов водными организмами необходимо учитывать различные показатели, в том числе период биологического полувыведения (T).

С осени 1986 года ¹³⁷Сѕ является основным радионуклидом, формирующим повышенные уровни радионуклидного загрязнения ихтиофауны [2,4,6]. На основании экспериментальных исследований скорости выведения ¹³⁷Сѕ из организма рыб [1,5] проанализирована роль компонент выведения этого нуклида в формировании загрязнения рыб ¹³⁷Сѕ в природных условиях. В наиболее общем случае обмен этого радионуклида между организмом и средой можно описать уравнением:

$$dA_f/dt = V(t) - pA_f \tag{1}$$

где A_f — радиоактивность организма,

V(t) — поступление (поток) радионуклида в организм за время dt,

р — скорость выведения радионуклида за счет радионуклидного распада и биологического выведения элемента из организма, для 137 Cs p = $-\ln(2)/T$.

Решение уравнения (1) с начальными условиями (t_0 , A_0) имеет вид:

$$A_{f}(t) = \exp(-F)(A_0 + \int V(t)\exp(F)dt)$$
(2)

(интегрирование от t_0 к t)

где $F(t) = \int 3Be = p(t-t_0) [3]$

Подставляя выражение F(t) в уравнение (2) получаем:

$$A_f(t) = \exp(-p(t-t_0))(A_0 + \int V(t)\exp(p(t-t_0)dt)$$

(интегрирование от t_0 до t).

Уравнение (3) относится только к одной из компонент выведения и в связи с тем, что выведение ¹³⁷Cs из организма имеет многокомпонентный характер [1, 5], содержание радионуклида в организме описывается суммой уравнений (3) для каждой парциальной компоненты выведения.

Проанализируем динамику содержания 137 Cs в рыбе при $A_0=0$ в момент времени $t_0=0$ и при постоянном потоке радионуклида в организм рыб. Из проведенных нами экспериментов [1, 5] следует, что $T_3\approx 10T_2\approx 100T_1$, $A_1\approx A_2\approx 1/3A_3$, где T_1 — парциальные периоды биологического полувыведения, A_1 — парциальные вклады компонент выведения. Тогда содержание радионуклида описывается уравнением:

$$A_{f}(t) = \sum \exp\left(\frac{-t \ln 2}{Ti}\right) \int AiV \exp\left(\frac{t \ln 2}{Ti}\right) dt = \sum \exp\left(\frac{-t \ln 2}{Ti}\right) AiV \frac{Ti}{\ln 2} \left(\exp\left(\frac{t \ln 2}{Ti}\right) - 1\right) = \sum AiV \frac{Ti}{\ln 2} \left[1 - \exp\frac{Ti}{\ln 2}\right], i = 1,3$$

$$(4)$$

(интегрирование от 0 до t)

На рис. 1 представлено уравнение (4) в графическом виде, из которого видно, что при $t > T_3$ вклад быстрых компонентов выведения в содержание $^{137}\mathrm{Cs}$ составляет менее 7%, что и было показано при экспериментальном изучении скорости выведения $^{137}\mathrm{Cs}$ карпами вооема-охладителя ЧАЭС [1,5]. Равновесное значение содержания радионуклида установится через $t > 3T_3$.

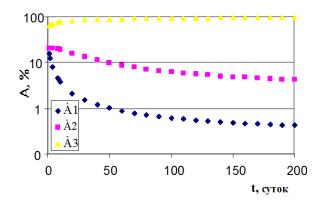


Рис. 1. Вклад компонент выведения в радиоактивность организма при хроническом поступлении радионуклида.

После аварии на ЧАЭС в водоеме-охладителе станции максимальные уровни радионуклидного загрязнения мирных видов рыб регистрировались летом 1986 года и составляли несколько сотен кБк/кг [4], а в 1991-1995 гг. среднее содержание ¹³⁷Сѕ в этих видах не превышало 10 кБк/кг, тогда как у хищных видов достигало 40 кБк/кг [6]. Среднее содержание ¹³⁷Сѕс 1993 по 1994 год уменьшилось: у сома канального на 7,4%, чехони — 27%, леща — 21%, карася — 6%, густеры — 27%, что соответствует экологическому периоду полувыведения 2-10 лет.

Высокое содержание радионуклидов цезия в воде водоемов зоны отчуждения (до нескольких десятков $\mathrm{Бк/n}$), на взвесях, в водной растительности и донных отложениях (до нескольких сотен $\mathrm{\kappa}\mathrm{Ek/kr}$), длительные экологические периоды полувыведения $^{137}\mathrm{Cs}$ из организма рыб, превышение удельной активности $^{137}\mathrm{Cs}$ желудочно-кишечного тракта над содержанием радионуклида в мышцах указывает на то, что в организм рыб поступает значительное количество $^{137}\mathrm{Cs}$ и для некоторых особей вклад коротких компонент выведения $^{137}\mathrm{Cs}$ может достигать 30%.

В Киевском водохранилище, как и водоеме-охладителе ЧАЭС, уже в начале июня 1986 года у мирных видов рыб наблюдались высокие уровни радионуклидного загрязнения ¹³⁷Сs. В 1987-1989 гг. в мирных рыбах водоема-охладителя ЧАЭС происходило снижение уровней накопления ¹³⁷Сs, а в Киевском водохранилище содержание этого радионуклида у аналогичных видов в период 1986-1989 гг. достоверно не изменялось [2,6], что свидетельствует об установлении динамического равновесия, при котором вклад быстрых компонент выведения составлял менее 5-7%. В 1990 году содержание ¹³⁷Сs в рыбах Киевского водохранилища уменьшилось по сравнению с периодом 1986-1989 гг. в два-три раза, в то время как концентрация ¹³⁷Сs в воде с осени 1986 года оставалась практически постоянной.

Таким образом, после залпового поступления радионуклидов в водные экосистемы на протяжении времени, сравнимого с периодом биологического полувыведения длительной компоненты, концентрация ¹³⁷Cs у мирных видов рыб достигает максимальных значений, которые могут сохраняться несколько лет, что и наблюдалось у рыб Киевского водохранилища. Радионуклидное загрязнение рыб ¹³⁷Cs формируется за счет вклада медленной компоненты выведения. Самоочищение рыб в естественных условиях может происходить только с периодом, превышающим период биологического полувыведения, полученный в лабораторных условиях.

ЛИТЕРАТУРА

- 1. Беляев В.В., Насвит О.И., Фомовский М.А. и др. К методике изучения динамики выведения гамма-излучающих радионуклидов у рыб // Матер. междунар. науч. конф. «Проблемы рационального использования биоресурсов водохранилищ». Киев, 1995. С. 142-143.
- 2. Волкова Е.Н. Накопление радионуклидов промысловыми видами рыб Днепровских водохранилищ: Автореф. дис... канд. бил. наук. К., 1990. 16 с.
- 3. Камке Э. Справочник по обыкновенным дифференциальным уравнением: Пер. с нем. М.: Наука, 1971. 576 с.
- 4. Крышев И.И. Радиоэкологические последствия Чернобыльской аварии. М.: ИАЭ им. Курчатова, 1991. 103 с.
- 5. Моделирование и изучение механизмов переноса радиоактивных веществ из наземных экосистем в водные объекты зоны влияния Чернобыльской аварии / Под ред. У.Сансоне и О.Войцеховича. Чорнобыль: Чорнобиль терінформ, 1996. С. 106-124.
- 6. Радиогеоэкология водных объектов зоны влияния аварии на Чернобыльской АЭС. Т.2 / Под ред. О.Войцеховича. К., 1998. С. 110-118.