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Abstract— In this article the implementation of neural network 

architecture based on a dense U-Net network is proposed. It is 

noted that retinal blood vessels are the basis for clinical diagnosis 

of some diseases. A review of the convolutional networks use for 

classification tasks and generalizion retinal vessel segmentation 

algorithms is performed. The general process of the neural 

network is presented. The differences between the real and the 

obtained results were evaluated. Evaluation of the neural 

network is carried out on several parameters. The figure with the 

recognized blood vessels as a result of the model is presented. 

Keywords — machine learning, neural network, machine 

learning library, retinal vessels segmentation. 

I.  INTRODUCTION 

Retinal blood vessels are the basis for the clinical diagnosis 
of some diseases. Achieving automatic retinal vessel 
segmentation in fundus imaging is an important and 
challenging task. This paper proposes neural network 
architecture based on a dense U-Net network. 

Convolutional networks have existed for a long time [27], 
their success was limited due to the size of the available 
training kits and the size of the considered networks. 
Kryzhevsky's breakthrough [1] was due to the controlled 
learning of a large network with 8 layers and millions of 
parameters of the ImageNet data set with 1 million training 
images. Since then, even larger and deeper networks have been 
taught [14]. 

The typical use of convolutional networks is used for 
classification tasks, where the source image is one class label. 
However, in many visual tasks, especially in biomedical image 
processing, the desired result should include localization, ie the 
class label should be assigned to each pixel. Moreover, 
thousands of educational images are usually inaccessible for 

biomedical tasks. Thus, Ciresan, Gambardella, Giusti and 
Schmidhuber [6] taught a network in a sliding window 
installation to predict the class label of each pixel by providing 
a local patch around that pixel. First, this network can be 
localized. Second, the training data in terms of patches is much 
larger than the number of training images. 

II. MATERIAL AND METHODS 

It is worth considering the network architecture shown in 
Figure 1, which is illustrated in [17]. It consists of a contracting 
path (left side) and an expansive path (right side). The laying 
path corresponds to the typical architecture of the 
convolutional network. It consists of repeated application of 
two 3x3 convolutions (unchanged convolutions), each of which 
is a rectified linear unit (ReLU) and a combination operation of 
max. 2x2 with step 2 to reduce the sample. At each sampling 
step, the number of functional channels is doubled. Each step 
in the expansive path consists of a resampling of the object 
map, followed by a 2x2 convolution (“convolution from 
above”), which halves the number of object channels, 
concatenation with a properly truncated object map from the 
contracting path and two 3x3 convolutions, each of which is 
accompanied by ReLU. Trimming is necessary due to the loss 
of border pixels in each gyrus. On the final layer, the 1x1 
convolution is used to map each 64-component feature vector 
to the desired number of classes. In total, the network has 23 
convolutional layers. 

mailto:vmartsenyuk@ath.bielsko.pl


 

Figure 1. U-Net architecture (example for 32x32 pixels with the lowest 
resolution). Each blue box corresponds to a multi-channel feature map. The 
number of channels is indicated at the top of the window. Size x-y is located 
in the lower left edge of the box. White boxes represent copied object maps. 

Arrows indicate various operations. 

Retinal blood vessels contain significant information 
regarding human health. Observation of the morphological 
structure of retinal vessels in fundus images is used not only for 
screening retinal vessel diseases, but also for auxiliary 
diagnosis of other diseases such as stroke [5], hypertension 
[21], diabetes-induced retinopathy [10] and glaucoma [9]. 
Images of the fundus have the following characteristics: low 
contrast between the vessel and the background, serious 
interventions in the affected area and a complex vessel 
structure, which creates many problems to achieve 
segmentation of retinal vessels [3]. Currently, the main method 
of retinal vessel segmentation is manual annotation by 
professional physicians. 

However, with the constant development of medical 
imaging technology, more and more images of the fundus 
require segmentation. Manual annotation of retinal vessels 
requires a lot of time and energy from physicians, and different 
physicians always adopt different standards for retinal vessel 
segmentation. Therefore, many algorithms for automatic retinal 
vessel segmentation have been proposed for Computer-Aided 
Diagnosis (CAD). Achieving automatic segmentation of retinal 
vessels can not only reduce the workload of physicians, but 
also avoid the subjective influence of different physicians on 
the results of segmentation. 

According to the generalized retinal vessel segmentation 
algorithms [11], [23], it can be divided into two categories: 
supervised and unsupervised algorithms. In general, 
unsupervised learning algorithms do not require manual 
annotation data and generally use some pre-established rules to 
extract vessel features and achieve segmentation, such as 
matching algorithms based on filters [16], deforming 
algorithms based on models [18], and tracking-based 
algorithms [24]. However, fixed rules of segmentation often 
cannot correspond to a variety of morphological distribution of 
vessels. 

The main idea of supervised learning algorithms is to teach 
a segmentation model using fundus images with segmentation 
annotations, which allow models to automatically extract 

vessel features to achieve vessel segmentation, for example, 
algorithms based on the Bayesian model [8], support vector 
machine based on algorithms [7] and deep learning algorithms 
[19], [4], [22], [20]. However, supervised learning algorithms 
require huge data with manual marking, which is difficult to 
obtain. 

In recent years, algorithms based on deep learning have 
continued to be developed and worked well in the field of 
retinal vessel segmentation, which have gradually become the 
main algorithm. Long, Shelhamer and Darrell [12], proposed a 
Fully Collapsed Neural (FCN) network, various retinal vessel 
segmentation algorithms based on the FCN structure are 
constantly coming out. Oliveira, Pereira and Silva [2] presented 
a retinal vessel segmentation algorithm that combines 
multiscale wavelet transform and multiscale FCN. Lu, Xu, 
Chen and Luo [13] used a Coarse-to-Fine Fully Convolutional 
Neural (CF-FCN) network to extract blood vessels in fundus 
images. The CF-FCN aimed to use the original data 
information and compensate for the output of the neural 
network by the spatial relationship between the pixels in the 
fundus image. However, the results of segmentation of the 
FCN-based structure did not have adequate results in detail. 
Therefore, it usually needed some processing methods, such as 
Conditional Random Field (CRF) and Markov Random Field 
(MRF). 

Among the FCN-based segmentation algorithms is the U-
net structure proposed by Ronneberger, Fischer and Brox [17], 
changed the method of connecting the transition to the map of 
functions in the FCN with the addition of concatenate, which is 
widely used in the field of segmentation of biomedical images. 
In addition, a large number of advanced U-Net-based 
algorithms have emerged for retinal vessel segmentation. For 
example, Xiao, Lian and Luo [26] propose a model based on a 
U-network with a weighted shutter of attention for 
segmentation of small retinal vessels. Gao, Cai and Qiu [25] 
combine Gaussian and U-Net filtering to achieve retinal vessel 
segmentation. Alom, Hasan and Yakopcic [15] offer two 
advanced models based on U-Net. The first is Recurrent 
Convolutional Neural Network (RCNN), and the second is the 
Recurrent Residual Convolutional Neural Network (RRCNN), 
both of which have been used successfully for retinal vessel 
segmentation. 

III. RESULTS AND DISCUSSION 

The implementation of a simple U-net model for 
segmentation of retinal blood vessels is presented below. The 
model is based on the Keras and Tensorflow libraries. The 
method was tested on a public DRIVE dataset. For the DRIVE 
data set, which consists of 40 images, we used 20 images to 
train the model and 20 images to test the model. Finally, 
complete content and organizational editing before formatting.  

Contrast-constrained adaptive histogram alignment 
(CLAHE) is used to normalize the images. The image is 
divided into small blocks called “tiles” (the default tile size is 
8x8 in OpenCV). Then each of these blocks is aligned. 
Therefore, in a small area, the histogram is limited to a small 
area (if there is no noise). If there is noise, it will be amplified. 
To avoid this, contrast restriction is applied. If the specified 



contrast limit is exceeded (default 40 in OpenCV), these pixels 
are truncated and evenly distributed in other containers before 
applying histogram alignment. After alignment, bilinear 
interpolation is used to remove artifacts within the tile. Gamma 
correction using the lookup table is applied. 

We used the Adam optimizer with initial_learning_rate = 
0.0003, first_decay_steps = 12000, t_mul = 1000, m_mul = 
0.5, alpha = 1e-5. 

For method evaluation we use Precision, Recall, Confusion 
matrix, and the area under the Receiver Operating 
Characteristic Curve (AUC-ROC) (Figures 2 and 3). 

Recall (also called True Positive Rate or Sensitivity) is 
defined as the ratio of truly classified vessel pixels. Precision 
(also called True Negative Rate or Specificity) is the ratio of 
truly classified non-vessel pixels. 

FPTP

TP
Precision


  

 

FNTP

TP
Recall


  

 
Where TP is the number of pixels that are classified as 

vessels in the image, which are correctly classified. FP is the 
number of pixels classified as vessels which are incorrectly 
classified. FN is the number of pixels classified as non-vessels 
which are incorrectly classified. 

 

 

Figure 2. Results of metrics calculation Dice Score, Precision, Recall, AUC 

 

Figure 3. Confussion matrix for model evaluation 

 

Another used metric is the AUC (Area under the curve) or 
ROC (Receiver Operating Characteristic Curve) (a graphical 
plot from (0;0) to (1;1) of the false positive rate (x-axis) versus 
the true positive rate (y-axis)). Figure. 4 shows the ROC curve. 

 

Figure 4. ROC curve 

To classify the images, we exported the images in the form 
of 25 tiles of the same size for deep learning. 

 

 
Figure 5. Exported images 

The forming tiles process for the deep learning application 
is presented in Figure 6. 

 
Figure 6. The forming training tiles process in the Google Colab environment 

 



Binary cross entropy was used as a loss function to 
determine the error between actual and obtained results and to 
minimize it. 

TABLE I.  MINIMIZING THE LOSS FUNCTION VALUE IN THE LEARNING 

PROCESS 

Iteration Loss 

function 

Dice 

coefficient 
Iteration 

Loss 

function 

Dice 

coefficient 

1 0.5218 0.4782 38 0.1181 0.8819 

2 0.4937 0.5063 39 0.1152 0.8848 

3 0.4742 0.5258 40 0.1131 0.8869 

4 0.4552 0.5448 … … … 

5 0.4355 0.5645 124 0.0228 0.9772 

6 0.4161 0.5839 125 0.0226 0.9774 

7 0.3970 0.6030 126 0.0224 0.9776 

8 0.3783 0.6217 127 0.0219 0.9781 

9 0.3603 0.6397 128 0.0215 0.9785 

… … … 129 0.0214 0.9786 

31 0.1410 0.8590 130 0.0214 0.9786 

32 0.1368 0.8632 131 0.0207 0.9793 

33 0.1334 0.8666 132 0.0206 0.9794 

34 0.1293 0.8707 133 0.0205 0.9795 

35 0.1262 0.8738 134 0.0201 0.9799 

36 0.1230 0.8770 135 0.0200 0.9800 

37 0.1201 0.8799 136 0.0198 0.9802 

 
The calculating process of the loss function and the Dice 

coefficient took place directly in the software environment. 

 

 

Figure 7. The calculating process of the loss function and the Dice coefficient 
in the Google Colab environment 

The result of the neural network is well traced comparing, 
for example, the initial image of the fundus in the eleventh 
image (Figure 8) and the results of the U-Net model that 
presented in Figure 9 with recognized blood vessels for the 
eleventh image. 

 

 
Figure 8. The initial image of the fundus in the eleventh image 

 

 

Figure 9. The U-net model results for the eleventh image 

 

IV. CONCLUSION 

Automatic the retinal vessels segmentation in the fundus 
images is an important task, as images with detected blood 
vessels can diagnose some diseases. This paper proposes the 
implementation of a neural network architecture based on a 
dense U-Net network in Google Colab on a public DRIVE data 
set using the Tensorflow machine learning library for the 
retinal vessels segmentation. The general process of the neural 
network is presented. Binary cross-entropy is used as a loss 
function for calculation the error between the actual and 
obtained results and its minimization. The results are presented 
in the table. Precision, Recall, Confusion matrix, and the area 
under the Receiver Operating Characteristic Curve (AUC-
ROC) were used evaluating the method. The results of the 
model, namely the recognized blood vessels are presented. 
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