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Parabolic convergence regions of branched continued fractions
of the special form

Bodnar D.I.1,3, Bilanyk I.B.2,3

Using the criterion of convergence of branched continued fractions of the special form with posi-

tive elements, effective sufficient criteria of convergence for these fractions are established. To study

the parabolic regions of convergence, the element regions and value regions technique was used.

In particular, half-planes are considered as value regions. A multidimensional analogue of Tron’s

twin convergence regions for branched continued fractions of the special form is established. The

obtained results made it possible to establish the conditions for the convergence of the multidimen-

sional S-fractions with independent variables.
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Introduction

Continued fractions are an effective tool for constructing rational approximations of ana-

lytic functions. In comparison with power series, they often converge faster, have wider re-

gions of convergence, and have the property of computational stability. The analytic theory

of continued fractions is referred in books of O. Perron [23], H. Wall [27], A. Khovanskii [19],

W. Jones and W. Thron [18], L. Lorentzen and H. Waadeland [21].

In the 60s of the twentieth century V.Ya. Skorobogatko proposed to construct rational ap-

proximations of the functions of several variables by means of a multidimensional generaliza-

tion of continued fractions so-called branched continued fractions (BCF). Fundamentals of the

analytical theory of general BCF with N branches are given in the books of P.I. Bodnarchuk

and V.Ya. Skorobogatko [12], V.Ya. Skorobogatko and D.I. Bodnar [26], D.I. Bodnar [7].

The problem of constructing the corresponding BCF for multiple power series caused the

appearance of two-dimensional continued fractions (Kh.Y. Kuchminska [20], M. O’Donohoe

and J. Murphy [22], A. Cuyt and B. Verdonk [13], W. Siemashko [25], O.M. Sus [4]) and

BCF with independent variables (D.I. Bodnar [8], O.E. Baran [5], T.M. Antonova [2], and

R.I. Dmytryshyn [3, 9, 10, 14]). Some examples of functions extensions into BCF with inde-

pendent variables are provided by R.I. Dmytryshyn (see, for example, [16]).

The problem of establishing regions of convergence of BCF with independent variables is

one of the most important. Since many convergence criteria of continued fractions are formu-

lated as convergence regions, it is also quite natural to construct such regions, in particular,
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parabolic regions of convergence, for BCF with independent variables. Such regions of con-

vergence were studied in the works [1, 3, 5, 7, 8, 11, 14, 15].

A BCF with independent variables at fixed values of variables is called a BCF of the special

form. This fraction is written as follows

b0 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)

bi(k)
= b0 +

N

∑
i1=1

ai(1)

bi(1) +
i1

∑
i2=1

ai(2)

bi(2) +
i2

∑
i3=1

ai(3)

bi(3) + . . .

, (1)

where b0, ai(k), bi(k) ∈ C, i(k) ∈ I ,

I = {i(k) = (i1, i2, . . . , ik) : 1 ≤ ik ≤ ik−1 ≤ · · · ≤ i0; k ≥ 1; i0 = N} .

We say that the BCF (1) converges if there exists a finite limit of the sequence of its approx-

imants

fn = b0 +
n

D
k=1

ik−1

∑
ik=1

ai(k)

bi(k)
, n = 1, 2, . . . .

In this paper, we investigate parabolic regions of convergence and consider some applica-

tion for them.

1 Sufficient criteria of convergence of BCF of the special form with positive

elements

The question of the convergence of a BCF of the special form with positive elements is

completely solved by the following theorem established in [6], it is the multidimensional gen-

eralization of Seidel’s criterion (see, for example, [26, p. 14]).

Theorem 1. The BCF of the special form

b0 +
∞

D
k=1

ik−1

∑
ik=1

1

bi(k)
, (2)

where b0, bi(k) > 0, i(k) ∈ I , converges if and only if the following series diverge

∞

∑
p=1

b
(m−1)
m[p]

, m = 1, N,
∞

∑
p=1

b
(m−1)
i(n),m[p]

, i(n) ∈ I (m+1), m = 1, N − 1, (3)

the elements of which are defined by the relations

b
(0)
i(k)

= bi(k), i(k) ∈ I ,

b
(m−1)
m[p]

= b
(m−2)
m[p]

+
∞

D
s=1

1

b
(m−2)
m[p],m−1[s]

, m = 2, N,

b
(m−1)
i(n),m[p]

= b
(m−2)
i(n),m[p]

+
∞

D
s=1

1

b
(m−2)
i(n),m[p],m−1[s]

, i(n) ∈ I (m+1), m = 2, N − 1,

(4)
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where

I (m+1) = {i(k) = (i1, i2, . . . , ik) : m + 1 ≤ ik ≤ ik−1 ≤ · · · ≤ i0; k ≥ 1; i0 = N} ,

m[p] = m, m, . . . , m︸ ︷︷ ︸
p

; p = 1, 2, . . . ; m − 1[s] = m − 1, m − 1, . . . , m − 1︸ ︷︷ ︸
s

; s = 1, 2, . . . .

The conditions of this theorem are formulated rather difficult for practical verification, so

it is expedient to establish an effective sufficient condition of convergence of the BCF (2).

Theorem 2. The BCF (2) is convergent if the following series are divergent

∞

∑
p=1

bm[p], m = 1, N,
∞

∑
p=1

bi(n),m[p], i(n) ∈ I (m+1), m = 1, N − 1. (5)

Proof. For proving it is enough to show that from the divergence of the series (5) it follows the

divergence of the set of series (3) for each m = 1, N.

Let m = 1. For any i(n) ∈ I (2), the series

∞

∑
p=1

b
(0)
1[p]

and
∞

∑
p=1

b
(0)
i(n),1[p]

are divergent by the conditions (5) since b
(0)
1[p]

= b1[p], b
(0)
i(n),1[p]

= bi(n),1[p] for all p ≥ 1 and

i(n) ∈ I . This fact and the Seidel theorem [26, p.14] imply that the continued fractions

b
(1)
i(n)

= b
(0)
i(n)

+
∞

D
s=1

1

b
(0)
i(n),1[s]

, i(n) ∈ I (2),

are convergent.

Let m = 2. For any i(n) ∈ I (3), from the divergense of the series (5), where m = 2, it follows

divergence of the series
∞

∑
p=1

b
(1)
2[p]

and
∞

∑
p=1

b
(1)
i(n),2[p]

since b
(1)
2[p]

> b
(0)
2[p]

= b2[p], b
(1)
i(n),2[p]

> b
(0)
i(n),2[p]

= bi(n),2[p], where p ≥ 1 , i(n) ∈ I (3).

Therefore, for any i(n) ∈ I (3), the continued fractions

b
(2)
i(n)

= b
(1)
i(n)

+
∞

D
s=1

1

b
(1)
i(n),2[s]

are convergent according to the Seidel theorem.

By analogy for m = 3, 4, . . . , N − 1, we obtain the divergence of the series

∞

∑
p=1

b
(m−1)
m[p]

and
∞

∑
p=1

b
(m−1)
i(n),m[p]

for all i(n) ∈ I (m+1), and the convergence of fractions, which are determined according to (4)

and take values b
(r−1)
r[q]

, b
(r−1)
i(n),r[q]

, i(n) ∈ I (r+1), r = 4, 5, . . . , N − 1, and fractions b
(N−1)
N[q]

, q ≥ 1.
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Finally, let m = N. In this case, we have the divergence of the series

∞

∑
p=1

bN[p].

Taking into account the relations (4), we obtain

b
(N−1)
N[p]

> b
(N−2)
N[p]

> · · · > b
(1)
N[p]

> b
(0)
N[p]

= bN[p], p = 1, 2, . . . .

Therefore, the series (3) are divergent, and the BCF (2) converges via the sufficiency of

Theorem 1.

Let us prove criteria of convergence of a BCF of the special form with arbitrary positive

elements.

Theorem 3. The BCF with positive elements

b0 +
∞

D
k=1

ik−1

∑
ik=1

ai(k)

bi(k)
(6)

converges if the following series diverge

∞

∑
p=1

√
bm[p]bm[p+1]

am[p+1]
, m = 1, N,

∞

∑
p=1

√
bi(n),m[p]bi(n),m[p+1]

ai(n),m[p+1]
, i(n) ∈ I (m+1), m = 1, N − 1.

Proof. We consider the equivalent BCF [7, p. 29] (see also [21]), the approximants of which

coincide with the approximants of the BCF (6),

b0 +
∞

D
k=1

ik−1

∑
ik=1

1

di(k)
, (7)

where

di(k) = bi(k)

k

∏
p=1

(ai(p))
(−1)k+p−1

, i(k) ∈ I .

According to Theorem 2 the BCF (7) converges if the following series diverge

∞

∑
p=1

dm[p], m = 1, N;
∞

∑
p=1

di(n),m[p], i(n) ∈ I (m+1), m = 1, N − 1.

Now we consider partial sums of these series. For each r ≥ 2 and m = 1, N we have

r

∑
p=1

dm[p] =
1

2

(
dm[1] + dm[r]

)
+

r−1

∑
p=1

1

2

(
dm[p] + dm[p+1]

)

≥
1

2

(
dm[1] + dm[r]

)
+

r−1

∑
p=1

√
dm[p]dm[p+1]

>

r−1

∑
p=1

√√√√bm[p]

p

∏
s=1

(
am[s]

)(−1)p+s−1

bm[p+1]

p+1

∏
s=1

(
am[s]

)(−1)p+s

=
r−1

∑
p=1

√
bm[p]bm[p+1]

am[p+1]
.
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Analogously, for each r ≥ 2, m = 1, N and i(n) ∈ I (m+1) we obtain

r

∑
p=1

di(n),m[p] >

r−1

∑
p=1

√√√√bi(n),m[p]

n

∏
s=1

(
ai(s)

)(−1)n+p+s−1 p

∏
s=1

(
ai(n),m[s]

)(−1)n+p+s−1

×

√√√√bi(n),m[p+1]

n

∏
s=1

(
ai(s)

)(−1)n+p+s p+1

∏
s=1

(
ai(n),m[s]

)(−1)n+p+s

=
r−1

∑
p=1

√
bi(n),m[p]bi(n),m[p+1]

ai(n),m[p+1]
.

Then, taking into account the divergence of the last series and Theorem 2, we obtain conver-

gence of the BCF (7). Therefore, the equivalent to it the BCF (6) converges as well.

Note that this theorem is multidimensional generalization of Pringsheim’s theorem (see,

for example, [21, p. 118]).

2 Parabolic regions of convergence

In proving parabolic theorems, the elements and value regions technique is significantly

used [7, pp. 111–116] (see also [17]).

The sequence {Vi(k)}i(k)∈I of non-empty sets Vi(k) ⊆ Ĉ, Ĉ = C∪ {∞} is called the sequence

of value regions of the BCF (1) with b0 = 0 if

ai(k)

(
bi(k) +

ik

∑
ik+1=1

Vi(k+1)

)−1
⊆ Vi(k), i(k) ∈ I .

For the given sequence of value regions {Vi(k)}i(k)∈I with Vi(k) ⊆ Ĉ sequence of regions

{Ωi(k)}i(k)∈I , that are defined by the relations

Ωi(k) :=

{
(a, b) ∈ C

2 : a
(
b +

ik

∑
ik+1=1

Vi(k+1)

)
⊆ Vi(k)

}
, i(k) ∈ I ,

is called the sequence of elements regions of the BCF (1), where b0 = 0, that are corresponding

to the sequence of value regions {Vi(k)}i(k)∈I . The element region is a region from where the

elements of the BCF are taken, that is
(

ai(k), bi(k)

)
∈ Ωi(k), i(k) ∈ I . If, in addition, the BCF (1)

converges, then these regions are called convergence regions (see [18, p. 109]).

Theorem 4. Let for each i(k), i(k) ∈ I ,

Vi(k) =
{

z ∈ C : Re
(

ze−iψk

)
≥ −pi(k)

}
, pi(k) > 0,

and

Ωi(k) =
{
(a, b) ∈ C

2 : |a| − Re
(

ae−i(ψk+ψk+1)
)
≤ 2pi(k)

(
Re
(

beiψk+1

)
− p∗i(k)

)}
,

where π/2 < ψk < π/2, k = 1, 2, . . . , and

p∗i(k) =
ik

∑
ik+1=1

pi(k+1) for each i(k) ∈ I . (8)

Then for the BCF (1) with b0 = 0 the
{

Vi(k)

}
i(k)∈I

and the
{

Ωi(k)

}
i(k)∈I

are sequences of value

regions and elements regions respectively.
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The proof is carried out according to the scheme proposed in [7, p. 38] (see also [17]).

If the elements of the BCF (1) with b0 = 0 satisfy the conditions ai(k) ∈ C and bi(k) ∈ R+ for

all i(k) ∈ I , ψk = 0, k = 1, 2, . . . , then from Theorem 4 we immediately obtain the following

result.

Corollary 1. Let for each i(k) ∈ I

Vi(k) =
{

z ∈ C : Re (z) ≥ −pi(k)

}
, pi(k) > 0,

and

Ωi(k) =
{
(a, b) ∈ C × R+ : |a| − Re (a) ≤ 2pi(k)

(
b − p∗i(k)

)}
,

where p∗i(k) are defined in (8). Then for the BCF (1) with b0 = 0 the
{

Vi(k)

}
i(k)∈I

and the
{

Ωi(k)

}
i(k)∈I

are sequences of value regions and elements regions respectively.

Let us establish parabolic regions of convergence for the BCF of the special form

(
b0 +

∞

D
k=1

ik−1

∑
ik=1

ai(k)

bi(k)

)−1

, (9)

where b0, bi(k), ai(k) ∈ C, i(k) ∈ I .

Theorem 5. Let (9) be the BCF and for each i(k) ∈ I , bi(k) is a fixed partial denominator chosen

from

Bi(k) =
{

z ∈ C : |z| ≥ p∗i(k)

}
,

where the pi(k) are some positive real numbers and p∗i(k) are defined in accordance with (8).

And moreover Re (b0) > ∑
N
i1=1 pi(1). Suppose that the partial numerator ai(k) belongs to the

parabolic region

Pi(k) =
{

z ∈ C : |z| − Re
(

ze−i(arg bi(k)+arg bi(k−1))
)
≤ 2pi(k) (1 − ε)

(∣∣∣bi(k)

∣∣∣− p∗i(k)

)}
, (10)

where 0 < ε < 1 and ai(k) 6= 0. Then

(A) there exist finite limits of the sequenses of even and odd approximants of the BCF (9);

(B) the BCF (9) converges if the following series diverge

∞

∑
p=1

√√√√
∣∣∣∣∣
bm[p]bm[p+1]

am[p+1]

∣∣∣∣∣, m = 1, N,

∞

∑
p=1

√√√√
∣∣∣∣∣
bi(n),m[p]bi(n),m[p+1]

ai(n),m[p+1]

∣∣∣∣∣, i(n) ∈ I (m+1), m = 1, N − 1;

(11)

(C) all approximants of BCF (9) belong to the circle

K =

{
w ∈ C :

∣∣∣∣w −
1

2

(
Re
(
b0

)
−

N

∑
i1=1

pi(1)

)−1
∣∣∣∣ ≤

1

2

(
Re
(
b0

)
−

N

∑
i1=1

pi(1)

)−1
}

.
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Proof. Using equivalent transformations [7, p. 29] (see also [18, p. 31]), where ρi(k) = e−i arg bi(k),

i(k) ∈ I , we reduce the BCF (9) to the following form

(
b0 +

∞

D
k=1

ik−1

∑
ik=1

ãi(k)

b̃i(k)

)−1

, (12)

where ãi(k) = ai(k)e
−i(arg bi(k)+arg bi(k−1)), b̃i(k) =

∣∣∣bi(k)

∣∣∣, i(k) ∈ I . Taking into account the relation

(10), it follows that the partial numerators of the BCF (12) belong to the parabolas

Pi(k) =
{

z ∈ C : |z| − Re (z) ≤ 2pi(k) (1 − ε)
(
b̃i(k) − p∗i(k)

)}
, i(k) ∈ I .

Using method of prooving of Theorem 3.22 [7, p. 111] let us prove that BCF (12) converges.

We set ãi(k) = |ãi(k)|e
iαi(k) , i(k) ∈ I . Let for each i(k) ∈ I

ãi(k)(z) = |ãi(k)|e
izαi(k), z ∈ Gδ,

where Gδ = {z ∈ C : |Im(z)| < δ, |Re (z)| < 1 + δ}, and the δ is an arbitrary real number such

that (1 + δ)2 eπδ (1 − ε) < 1.

Now, let us prove that ãi(k)(z) ∈ Pi(k), where ε = 0, i(k) ∈ I . We consider the BCF

(
b0 +

∞

D
k=1

ik−1

∑
ik=1

ãi(k)(z)

b̃i(k)

)−1

. (13)

Using Corollary 1 we obtain that the value of the approximants of the BCF inverse to (13),

belong to a half-plane

V =

{
z ∈ C : Re (z) ≥ Re (b̃0)−

N

∑
i1=1

pi(1)

}
.

Thus, the values of the approximants of the BCF (13) belong to the circle

K =

{
w ∈ C :

∣∣∣∣w −
1

2

(
Re
(
b̃0

)
−

N

∑
i1=1

pi(1)

)−1
∣∣∣∣ ≤

1

2

(
Re
(
b̃0

)
−

N

∑
i1=1

pi(1)

)−1
}

.

Let the fn(z) be the nth approximant of the BCF (13), n = 1, 2, . . . . It is obvious that fn(z)

is a holomorphic function in the domain Gδ. For the sequence { fn(z)} the conditions of Theo-

rem 2.17 [7, p. 66] hold, where, for example, a = −1, b = −2.

Let us take ∆ = {z ∈ C : Re (z) = 0, |Im (z)| < δ}. Then for z ∈ ∆ the BCF (13) has the

form (
b0 +

∞

D
k=1

ik−1

∑
ik=1

a′i(k)

b̃i(k)

)−1

, (14)

where a′
i(k)

=
∣∣∣ãi(k)

∣∣∣ e− Im(z)αi(k) , i(k) ∈ I .

From the divergence of the series (11), it follows the divergence of the series

∞

∑
p=1

√√√√
∣∣∣∣∣
bm[p]bm[p+1]

am[p+1]

∣∣∣∣∣e
αm[p] Im(z)/2 for each m = 1, N,
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∞

∑
p=1

√√√√
∣∣∣∣∣
bi(n),m[p]bi(n),m[p+1]

ai(n),m[p+1]

∣∣∣∣∣e
αi(n),m[p] Im(z)/2 for each m = 1, N − 1, i(n) ∈ I (m+1).

And this, according to Theorem 2, means that the BCF inverse to (14) is convergent, and hence

the BCF (14) is convergent for z ∈ ∆.

Thus, according to the Stieltjes-Vitali theorem [7, p. 62], the BCF (13) coincides on each

compact subset of the domain Gδ, in particular, on the compact set {1}, which is equivalent to

convergence of the BCF (12), and hence of the BCF (9).

BCF of the special form with positive elements have the property of monotonicity of even

and odd approximants. This fact could be proven analoguously as for general BCF [7, p. 29].

Therefore, we obtain that always there are finite limits of even and odd approximants of the

BCF (14). And using the Stieltjes-Vitali theorem [7, p. 62], we make sure that the even and odd

approximants of the BCF (9) have finite and equal limits.

Remark 1. The condition ai(k) 6= 0, i(k) ∈ I , can be omitted, since if there is a multiindex

i(k) such that ai(k) = 0, then the corresponding branch of the multidimensional fraction is

terminated, and the series whose multiindexes of elements include i(k) are not taken into

account.

Theorem 5 is some kind of analogue of Theorem 3.22 [7, p. 111] reformulated for BCF of

the special form.

Theorem 6. Let (9) be the BCF and for each i(k) ∈ I , bi(k) is a fixed partial denominator chosen

from

Bi(k) =
{

z ∈ C : |z| ≥ p∗i(k)

}
,

where the pi(k) are some positive real numbers and p∗i(k) are defined in accordance with (8).

And moreover Re (b0) > ∑
N
i1=1 pi(1) cos γ. Suppose that the partial numerator ai(k) belongs to

the parabolic region

Pi(k) =
{

z ∈ C : |z| − Re
(

ze−i(arg bi(k)+arg bi(k−1)+2γ)
)
≤ 2pi(k) cos2 γ (1 − ε)

(∣∣∣bi(k)

∣∣∣− p∗i(k)

)}
,

where 0 < ε < 1 and ai(k) 6= 0. Then

(A) there exist finite limits of the sequenses of even and odd approximants of the BCF (9);

(B) the BCF (9) converges if the series (11) diverge;

(C) all approximants of the BCF (9) belong to the circle

K =

{
w ∈ C :

∣∣∣∣w −
e−iγ

2

(
Re (b0)−

N

∑
i1=1

pi(1) cos γ
)−1

∣∣∣∣ ≤
1

2

(
Re (b0)−

N

∑
i1=1

pi(1) cos γ
)−1

}
.

The proof of the theorem could be done according to the scheme of the proof of Theo-

rem 3.23 [7, p. 114]. But before, by means of equivalent transformations, we reduce the BCF

(9) to the equivalent BCF (12). The condition ai(k) 6= 0, i(k) ∈ I , can be omitted, taking into

account Remark 1.

Putting bi(k) = 1, i(k) ∈ I , pi(2s) =
1 − d

i2s−1
, pi(2s+1) =

d

i2s
, i(2s), i(2s + 1) ∈ I , s = 1, 2, . . . ,

0 < d < 1, we obtain a multidimensional analogue of Tron’s theorem on twin parabolic do-

mains of convergence [24].
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Corollary 2. Let the elements of the BCF

(
b0 +

∞

D
k=1

ik−1

∑
ik=1

ai(k)

1

)−1

(15)

belong to parabolic regions, that is ai(k) ∈ Pi(k), i(k) ∈ I , where

Pi(k) =

{
z ∈ C : |z| − Re

(
ze−2iγ

)
≤

2D2
k (1 − ε)

ik−1
cos2 γ

}
,

where D2s = (1 − d)2, D2s−1 = d2, 0 < d < 1, s = 1, 2, . . . , 0 < ε < 1 . Then

(A) there exist finite limits of the sequenses of even and odd approximants of the BCF (15);

(B) the BCF (15) converges if the following series diverge

∞

∑
p=1

√∣∣∣am[p+1]

∣∣∣
−1

, m = 1, N,

∞

∑
p=1

√∣∣∣ai(n),m[p+1]

∣∣∣
−1

, i(n) ∈ I (m+1), m = 1, N − 1;

(C) all approximants of the BCF (15) belong to the circle

K =

{
w ∈ C :

∣∣∣∣w −
e−iγ

2 (Re (b0)− d cos γ)

∣∣∣∣ ≤
1

2 (Re (b0)− d cos γ)

}
.

3 Application

The application of Corollary 2 will be illustrated by the study of the regions of convergence

of multidimensional S-fractions with independent variables

(
1 +

∞

D
k=1

ik−1

∑
ik=1

ai(k)zik

1

)−1

, (16)

where ai(k) > 0, i(k) ∈ I , zik
∈ C, ik = 1, N, z = (z1, z2, . . . , zN) ∈ CN .

The approximants fn (z) of these BCF are multidimensional rational functions. The fol-

lowing theorem investigates the convergence of these rational approximations. In this case, a

multidimensional analogue of the Stieltjes-Vitali theorem [7, p. 62] is significantly used.

Theorem 7. Let the { fm (z)} be a sequence of holomorphic functions in the domain D ⊂ Cn,

uniformly bounded inside D.

If fm (z) converges at each point of the set ∆ ⊂ D, which is a 2n-dimensional neighborhood,

an n-dimensional real or an n-dimensional imaginary neighborhood of the point z0 ∈ D, then

fm(z) converges uniformly on any compact set K, K ⊂ D, to a holomorphic function in D .
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Theorem 8. Let (16) be a multidimensional S-fraction with independent variables and the

series
∞

∑
p=1

a−1/2
m[p]

, m = 1, N,

∞

∑
p=1

a−1/2
i(n)m[p]

, i(n) ∈ I (m+1), m = 1, N − 1,

(17)

are divergent. Then

(A) if supi(k)∈I ai(k) = ∞, then the BCF (16) converges in each point z ∈ G (γ), for each

|γ| < π/2,

G (γ) = H (γ)× H (γ)× · · · × H (γ)︸ ︷︷ ︸
N

⊂ C
N , H (γ) = {w ∈ C : arg w = γ} ,

(B) if supi(k)∈I

(
ai(k)ik−1

)
= A, then the BCF (16) converges in the domain P (γ), for each

|γ| < π/2,

P (γ) = P1 (γ)× P2 (γ)× · · · × PN (γ) ⊂ C
N ,

Pk (γ) =

{
zk ∈ C : |zk| − Re

(
zke(−2iγ)

)
<

2Dk

A
cos2 γ

}
, k = 1, N,

where Dk are defined in Corollary 2.

Proof. (A) Let γ be an arbitrary real number such that |γ| < π/2. Since the series (17) diverge,

then for an arbitrary z ∈ G (γ) and an arbitrary ai(k), i(k) ∈ I , the following series also diverge

∞

∑
p=1

∣∣∣am[p]zm

∣∣∣
−1/2

for each m = 1, N,

∞

∑
p=1

∣∣∣ai(n)m[p]zm

∣∣∣
−1/2

for each m = 1, N − 1, i(n) ∈ I (m+1).

(18)

If z ∈ G (γ), then

∣∣ai(k)zik

∣∣− Re
(

ai(k)zik
e−2iγ

)
= 0 <

2Dk(1 − ε)

ik−1
cos2 γ.

Thus, by Corollary 2, the BCF (16) converges at each point z ∈ G (γ).

(B) Let { fn (z)} be the sequence of approximants of the BCF (16). Taking into account that

supi(k)∈I

(
ai(k)ik−1

)
= A we obtain for all ai(k), i(k) ∈ I ,

∣∣ai(k)zik

∣∣− Re
(

ai(k)zik
e−2iγ

)
≤

2Dk

ik−1
cos2 γ.

It follows from Theorem 4 that

Re

(
1 +

n

D
k=1

ik−1

∑
ik=1

ai(k)zik

1

)
≥ 1 − d cos γ.

Then the approximants of the BCF (16) are holomorphic functions in the domain P (γ) and

their values belong to the circle

K (γ) =

{
w ∈ C :

∣∣∣∣w −
e−iγ

2 (1 − d cos γ)

∣∣∣∣ ≤
1

2 (1 − d cos γ)

}
.
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Therefore, the sequence { fn (z)} is bounded in P (γ). Let

∆ = {w ∈ C : arg w = 2γ, r < |w| < R} .

Obviously, ∆N ⊂ P (γ). Then for an arbitrary z ∈ ∆N , we have for all ai(k), i(k) ∈ I ,

∣∣ai(k)zik

∣∣− Re
(

ai(k)zik
e−2iγ

)
= 0 <

2Dk(1 − ε)

ik−1
cos2 γ.

Since the series (18) are divergent, then according to Corollary 2 the BCF (16) converges if

z ∈ ∆N . By Theorem 7, the multidimensional S-fraction with independent variables (16) con-

verges on each compact subsets of the domain P (γ).

4 Conclusions

In the paper, we considered the problem of convergence of BCF of the special form. The

problem of establishing new sufficient convergence criteria of BCF with complex elements

in the case of numerical and functional BCF remains open. Concerning parabolic theorems,

the question of the possibility of expanding these domains by omitting ε is open, since the

presence of ε > 0 arises from the used method of proving. Therewith, the problem to establish

truncation error bounds of a BCF, when its elements belong to parabolic domains, remains

open.
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Боднар Д.I., Бiланик I.Б. Параболiчнi областi збiжностi гiллястих ланцюгових дробiв спецiального

вигляду // Карпатськi матем. публ. — 2021. — Т.13, №3. — C. 619–630.

Використовуючи критерiй збiжностi гiллястих ланцюгових дробiв спецiального вигляду з

додатними елементами, встановлено ефективнi достатнi умови збiжностi цих дробiв. Для ви-

вчення параболiчних областей збiжностi використано технiку множин елементiв та множин

значень. Зокрема, у якостi множин значень розглядаються пiвплощини. Встановлено багато-

вимiрний аналог областей збiжностi Трона для гiллястих ланцюгових дробiв спецiального ви-

гляду. Отриманi результати дали змогу встановити умови збiжностi багатовимiрного S-дробу

з нерiвнозначними змiнними.

Ключовi слова i фрази: гiллястий ланцюговий дрiб, збiжнiсть, неперервний дрiб, рацiональне

наближення.


