
Міністерство освіти і науки України

Тернопільський національний педагогічний університет

імені Володимира Гнатюка

Фізико-математичний факультет

Кафедра інформатики та методики її навчання

Кваліфікаційна робота

ОСОБЛИВОСТІ ВИВЧЕННЯ МОВ ПРОГРАМУВАННЯ УЧНЯМИ

ЗАКЛАДІВ ЗАГАЛЬНОЇ СЕРЕДНЬОЇ ОСВІТИ (7-9 КЛАСИ)

Спеціальність 014 Середня освіта

Освітня програма

«Середня освіта (Інформатика, математика, STEM-освіта)»

Здобувача другого (магістерського)

рівня вищої освіти

Валігура Михайло Ігорович

НАУКОВИЙ КЕРІВНИК:

кандидат фізико-математичних наук,

доцент кафедри інформатика та

методики її навчання

Мартинюк Сергій Володимирович

РЕЦЕНЗЕНТ:

методист, завідувач центру інформатики,

інформаційно-комунікаційних

технологій

і дистанційної освіти ТОКІППО

Любомир Євстахович Кривокульський

Тернопіль — 2025

АНОТАЦІЯ

Валігура М. І. Особливості вивчення мов програмування учнями закладів

загальної середньої освіти (7–9 класи). Кваліфікаційна робота на здобуття

освітнього ступеня «магістр» зі спеціальності 014 Середня освіта. ТНПУ

ім. В. Гнатюка. Тернопіль, 2025. 80 с.

У кваліфікаційній роботі здійснено комплексне дослідження теоретичних

і методичних засад вивчення мов програмування учнями 7–9 класів.

Проаналізовано нормативні документи, державні стандарти та типові навчальні

програми з інформатики, розглянуто сучасні підходи до навчання

програмування, включаючи класичні методи, інтерактивні технології, візуальні

та текстові мови програмування, гейміфікацію та онлайн-платформи, наведено

приклади навчальних завдань і проєктів, розроблено критерії оцінювання. На

основі аналізу результатів доведено позитивний вплив методики на розвиток

алгоритмічного, логічного та творчого мислення учнів, а також на підвищення

їхньої успішності та мотивації у вивченні програмування.

Ключові слова: програмування, інформатика, 7–9 класи, алгоритмічне

мислення, мови програмування, Python, JavaScript, Scratch, методика навчання

програмування, гейміфікація, алгоритми, навчальні проєкти, педагогічний

експеримент.

ABSTRACT

Valihura M. I. Peculiarities of programming language learning by secondary

school students (Grades 7–9). Master's thesis for the MA degree in the specialty 014

Secondary education. Ternopil Volodymyr Hnatiuk National Pedagogical University.

Ternopil, 2025. 80 p.

The thesis presents a comprehensive study of the theoretical and methodological

foundations of teaching programming languages to students in grades 7–9. It analyzes

regulatory documents, state standards, and standard curricula for computer science, and

examines modern approaches to teaching programming, including classical methods,

interactive technologies, visual and text-based programming languages, gamification,

and online platforms, examples of educational tasks and projects are provided, and

assessment criteria are developed. Based on the analysis of the results, the positive

impact of the methodology on the development of students' algorithmic, logical, and

creative thinking, as well as on improving their academic performance and motivation

in learning programming, has been proven.

Keywords: programming, informatics, grades 7–9, algorithmic thinking,

programming languages, Python, JavaScript, Scratch, programming education

methodology, gamification, algorithms, learning projects, pedagogical experiment.

3

ЗМІСТ

ВСТУП ..4

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ ВИВЧЕННЯ МОВ

ПРОГРАМУВАННЯ В ОСВІТНЬОМУ ПРОЦЕСІ6

1.1. Аналіз нормативних документів щодо вивчення мов програмування в

школі ...6

1.2. Основні підходи до викладання мов програмування у 7–9 класах 10

1.3. Порівняльний аналіз мов програмування, які використовуються в

загальноосвітніх школах ... 16

1.4. Вікові особливості учнів 7–9 класів у контексті вивчення

програмування ... 20

ВИСНОВКИ ДО ПЕРШОГО РОЗДІЛУ ... 29

РОЗДІЛ 2. МЕТОДИКА ФОРМУВАННЯ УМІНЬ ПРОГРАМУВАННЯ В

УЧНІВ 7–9 КЛАСІВ .. 31

2.1. Концептуальні засади побудови методики .. 31

2.2. Модель формування умінь програмування (адаптована таксономія

програмування) .. 35

2.3. Практична реалізація методики у навчальному процесі 46

2.4. Оцінювання результатів навчання програмування 50

ВИСНОВКИ ДО ДРУГОГО РОЗДІЛУ ... 55

РОЗДІЛ 3. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ

РОЗРОБЛЕНОЇ МЕТОДИКИ ... 56

3.1. Організація педагогічного експерименту .. 56

3.2. Методи та інструменти дослідження ... 59

3.3. Проведення експерименту .. 64

3.4. Аналіз результатів експерименту ... 69

ВИСНОВКИ ДО ТРЕТЬОГО РОЗДІЛУ ... 75

ВИСНОВКИ ... 76

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ .. 78

4

ВСТУП

Сучасний світ стрімко змінюється під впливом цифрових технологій, і

програмування посідає у ньому особливе місце. Воно перестало бути виключно

професійною компетентністю програмістів і дедалі більше розглядається як

універсальне вміння, що допомагає людині орієнтуватися у складних

інформаційних процесах, розв’язувати задачі, створювати власні цифрові

продукти. Саме тому формування основ програмування в учнів базової школи

сьогодні є одним із ключових завдань сучасної освіти.

Учні 7–9 класів перебувають у віці, коли активно розвиваються логічне

мислення, здатність до аналізу та перші елементи абстрактного моделювання. У

цей період вони вже мають початковий досвід роботи з цифровими пристроями,

а інтерес до технологій часто є високим і природним. Однак одночасно саме ця

вікова група стикається з низкою труднощів: складність синтаксису, нерозуміння

логіки алгоритмів, страх припуститися помилки. Тому від учителя вимагається

не лише володіння мовами програмування, а й уміння побудувати навчання так,

щоб підтримувати інтерес, поступово ускладнювати матеріал і допомагати

учням долати бар’єри.

Попри наявність сучасних ресурсів, шкільна практика показує, що

вивчення мов програмування часто обмежується демонстрацією прикладів,

виконанням типових вправ або надмірним акцентом на синтаксисі. Учням бракує

можливостей для творчості, практичної діяльності та роботи над власними

маленькими проєктами. У результаті мотивація знижується, а програмування

сприймається як складна дисципліна, що потребує «особливих здібностей».

У зв’язку з цим виникає потреба в методиці, яка б дозволила

цілеспрямовано формувати вміння програмування, враховуючи вікові

особливості учнів і сучасні педагогічні підходи. Важливо не лише навчити

користуватися певною мовою програмування, а й сформувати у школярів

здатність мислити алгоритмічно, аналізувати помилки, створювати власні

рішення, застосовувати отримані знання у реальних ситуаціях.

5

Актуальність теми зумовлена необхідністю оновлення підходів до

викладання інформатики в базовій школі, пошуком ефективних способів

поєднання класичних методів і сучасних цифрових інструментів, а також

потребою у формуванні компетентностей, визначених Державним стандартом

базової середньої освіти. Вивчення мов програмування у 7–9 класах повинно

стати не набором фрагментованих навичок, а цілісним процесом, який поступово

веде учня від розуміння простих конструкцій до створення власних мініпроєктів.

Метою кваліфікаційної роботи є дослідження особливостей навчання мов

програмування учнів основної школи, розробка методики формування

програмувальних умінь та експериментальна перевірка її ефективності.

Для досягнення цієї мети було поставлено такі завдання:

1. Проаналізувати теоретичні основи вивчення мов програмування у 7–

9 класах.

2. Проаналізувати існуючі і створити власну методику вивчення мов

програмування учнями в ЗЗСО.

3. Здійснити експериментальне дослідження ефективності розробленої

методики.

Об’єктом дослідження є особливості вивчення мов програмування

учнями закладів загальної середньої освіти.

Предмет дослідження — умови та методи вивчення мов програмування.

Методи дослідження. Для виконання визначених завдань дослідження

були використані теоретичні методи: узагальнення і систематизація наукових

даних і аналіз літератури; емпіричні: психодіагностичні методи; педагогічний

експеримент (констатувальний, формувальний і контрольний етапи),

анкетування та тестування здобувачів освіти, статистичну обробку результатів.

Структура й обсяг роботи. Структура роботи зумовлена її метою та

завданнями. Дослідження складається зі вступу, трьох розділів, висновків,

списку використаних джерел і додатків.

6

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ ВИВЧЕННЯ МОВ

ПРОГРАМУВАННЯ В ОСВІТНЬОМУ ПРОЦЕСІ

1.1. Аналіз нормативних документів щодо вивчення мов програмування в

школі

Державний стандарт базової середньої освіти є нормативним документом,

що визначає основні вимоги до результатів навчання, структури та змісту

освітнього процесу на рівні 5–9 класів [5]. Він затверджується Міністерством

освіти і науки України і регламентує ключові компетентності, які мають бути

сформовані в учнів на різних етапах навчання [8].

У контексті вивчення мов програмування важливими положеннями

стандарту є:

 формування цифрової компетентності. Відповідно до стандарту,

учні мають оволодіти основами алгоритмічного мислення, розуміти

принципи роботи програмного забезпечення та використовувати

цифрові технології для розв’язання навчальних і життєвих завдань;

 розвиток математичної та алгоритмічної грамотності.

Програмування розглядається як засіб розвитку логічного та

критичного мислення, що сприяє застосуванню математичних знань

у реальних ситуаціях;

 інтеграція з іншими навчальними дисциплінами. Стандарт

передбачає, що інформатика, зокрема програмування, може

використовуватися для вирішення задач у математиці, природничих

та технічних науках.

Таким чином, Державний стандарт базової середньої освіти визначає

програмування не лише як окремий навчальний напрям, а як складову частину

загальної інформаційної культури сучасного учня [18].

Вимоги навчальних програм з інформатики для 7–9 класів

Навчальні програми з інформатики для 7–9 класів деталізують положення

Державного стандарту і визначають змістове наповнення курсу, кількість годин,

розподіл тем і очікувані результати навчання [28].

7

Згідно з чинними програмами, вивчення мов програмування у 7–9 класах

охоплює такі основні аспекти:

 7 клас: Ознайомлення з поняттям алгоритму, структурами

алгоритмів (лінійні, розгалужені, циклічні), використання

візуальних середовищ програмування (Scratch, Blockly) [15].

 8 клас: Поглиблене вивчення алгоритмічних конструкцій у

текстових мовах програмування (Python, JavaScript), робота зі

змінними, операціями введення/виведення, базовими

математичними обчисленнями [6].

 9 клас: Основи структурного програмування, розробка власних

алгоритмів, використання функцій, списків і масивів, створення

програмних проєктів [17].

Вимоги до навчальних програм також включають такі аспекти:

Практична спрямованість навчання – учні повинні не лише засвоювати

теоретичний матеріал, а й реалізовувати власні алгоритми та програми [22].

Гнучкість у виборі інструментів навчання — дозволяється

використовувати різні мови програмування залежно від технічних можливостей

школи та рівня підготовки учнів [27].

Розвиток компетентностей — окрім знань, учні мають набувати навичок

аналізу задач, пошуку помилок у коді та оптимізації програм [26].

Таким чином, навчальні програми для 7–9 класів спрямовані на поступове

формування алгоритмічного мислення та базових навичок програмування, що є

важливим етапом у підготовці школярів до подальшого вивчення інформаційних

технологій [24].

Типові навчальні програми та підручники з інформатики

Огляд програм Міністерства освіти і науки України

Навчальні програми з інформатики для базової середньої освіти (7–9

класи) є нормативними документами, що визначають зміст, структуру та

методичні підходи до викладання предмета [2]. Вони розробляються відповідно

8

до Державного стандарту базової середньої освіти та затверджуються

Міністерством освіти і науки України (МОН).

Основні навчальні програми з інформатики для 7–9 класів, рекомендовані

МОН, передбачають вивчення мов програмування як одного з ключових аспектів

цифрової компетентності учнів [23]. Зокрема, вони охоплюють:

7 клас:

 Основи алгоритмізації;

 Візуальне програмування (Scratch, Blockly);

 Робота з алгоритмічними структурами (слідування, розгалуження,

повторення);

8 клас:

 Ознайомлення з текстовими мовами програмування;

 Операції введення-виведення;

 Робота зі змінними та арифметичними операціями;

 Використання умовних операторів;

9 клас:

 Робота з циклами;

 Використання функцій;

 Робота з масивами;

 Основи об'єктно-орієнтованого програмування.

Програми МОН дозволяють навчальним закладам обирати конкретні мови

програмування відповідно до технічного забезпечення школи та підготовки

учнів [21]. Найпопулярнішими варіантами є Python, JavaScript, а в деяких

випадках C++ або Pascal.

Також програми передбачають використання онлайн-платформ для

вивчення програмування, інтерактивних середовищ (Code.org, Scratch), а також

виконання практичних і творчих завдань, що сприяють розвитку алгоритмічного

мислення [34].

9

Аналіз змісту підручників з інформатики щодо викладання мов

програмування

Підручники з інформатики для 7–9 класів, затверджені МОН, є основними

навчальними матеріалами для школярів та вчителів [3]. Вони містять

теоретичний матеріал, практичні завдання, приклади програмного коду та

методичні рекомендації для самостійної роботи учнів.

Аналіз сучасних підручників з інформатики дозволяє виокремити кілька

ключових тенденцій у викладанні мов програмування:

Орієнтація на практичне засвоєння матеріалу

 підручники містять велику кількість практичних завдань та

прикладів коду;

 навчальні тексти супроводжуються покроковими інструкціями для

написання простих програм.

Використання візуальних та текстових мов програмування

 у 7 класі переважають Scratch і Blockly, які дозволяють учням

опанувати основи алгоритмізації у зрозумілій формі;

 у 8–9 класах вводяться текстові мови, такі як Python, які мають

простий синтаксис і є зручними для початківців.

Модульна структура навчання

 підручники поділені на розділи, кожен із яких присвячений окремій

темі: змінні, оператори, цикли, функції тощо;

 такий підхід дозволяє поступово вводити нові поняття та

закріплювати їх на практиці.

Недоліки підручників

 деякі підручники містять застарілі мови програмування (наприклад,

Pascal), які рідко використовують у сучасній практиці;

 недостатня кількість інтегрованих онлайн-ресурсів і посилань на

додаткові матеріали;

 обмежена кількість завдань на проєктну діяльність, що ускладнює

формування творчих підходів до розробки програм.

10

Таким чином, сучасні підручники з інформатики загалом відповідають

навчальним програмам МОН, проте потребують оновлення з урахуванням

сучасних тенденцій у програмуванні. Використання актуальних мов

програмування, інтерактивних ресурсів і практико-орієнтованих підходів є

ключовими напрямками вдосконалення навчальних матеріалів.

1.2. Основні підходи до викладання мов програмування у 7–9 класах

Класичні методи навчання програмування

У школах програмування найчастіше навчають за традиційними

підходами, які поступово змінюються, але все одно залишаються основою

навчального процесу. Найбільш поширеними є лекційно-практичний підхід,

проєктне навчання та метод роботи з проблемними ситуаціями. Кожен із них

виконує свою роль і допомагає по-різному організувати урок.

Лекційно-практичний підхід

Це, мабуть, найзвичніший формат уроку програмування. Спочатку вчитель

пояснює новий матеріал: вводить нові поняття, показує алгоритми, пояснює

синтаксис, розбирає приклади коду. Часто на цьому етапі демонструють, як

програма працює «вживу», та звертають увагу на помилки, які найчастіше

роблять учні.

Після пояснення учні переходять до практики: виконують завдання,

пробують написати власні програми, вносять зміни в код, щоб побачити, як це

впливає на результат. Учитель допомагає розібратися з помилками і підказує, як

оптимізувати рішення.

Такий підхід зручний тим, що матеріал подається послідовно і поступово

ускладнюється. Але через різний темп навчання учні не завжди рухаються

рівномірно, і інколи бракує простору для творчості.

Проєктно-орієнтоване навчання

Проєктний підхід дає учням можливість працювати над реальними й

зрозумілими завданнями [14]. Це може бути будь-що: від невеликої гри або

калькулятора до простого чат-бота. Спершу обирають тему проєкту, потім разом

11

обговорюють, як він має працювати, яку функціональність потрібно реалізувати

та яким буде кінцевий результат.

Далі учні переходять безпосередньо до роботи: планують етапи, пишуть

код, тестують програму, виправляють помилки й наприкінці презентують свою

роботу. Часто такі проєкти виконують у групах, що вчить домовлятися,

розподіляти завдання та відповідати за спільний результат.

Головна перевага цього підходу — діти бачать практичний сенс

програмування, а не просто виконують абстрактні вправи. Проте варто

враховувати, що проєкти потребують більше часу, і деяким учням може

знадобитися додаткова підтримка.

Проблемно-орієнтоване навчання

У цьому підході урок будується навколо конкретної задачі або проблемної

ситуації. Учитель може запропонувати учням подумати, як прискорити певний

алгоритм, як покращити фрагмент коду або як змінити програму, щоб вона могла

працювати з новими типами даних.

Далі учні пропонують свої варіанти, обговорюють їх, експериментують із

кодом і пробують різні підходи на практиці. Наприкінці вони порівнюють

отримані рішення й визначають, яке з них виявилося найефективнішим.

Цей підхід добре формує навички самостійного мислення й пошуку

нестандартних відповідей. Водночас він складніший у проведенні: не всім учням

легко працювати без чіткої покрокової інструкції, а вчителю потрібно

заздалегідь продумати логіку уроку, щоб робота була посильною й

результативною.

Поєднання цих трьох методів дозволяє побудувати гнучку систему

навчання програмуванню. Лекції дають основу, проєкти мотивують і дають

відчуття результату, а проблемні завдання розвивають справжні навички

програміста — уміння шукати й знаходити рішення. Саме баланс цих підходів

найкраще працює в 7–9 класах, де учні тільки формують своє уявлення про

програмування.

12

Використання інтерактивних технологій

З розвитком цифрових технологій навчання програмування у 7–9 класах

все частіше базується на інтерактивних методах. Використання спеціалізованих

середовищ та онлайн-платформ дозволяє зробити процес навчання більш

цікавим і доступним для учнів.

Застосування інтерактивних середовищ програмування

Візуальні та блокові середовища програмування є чудовим інструментом

для початкового навчання алгоритмічного мислення та основ програмування

[25]. Вони дозволяють учням створювати програми шляхом маніпуляції блоками

коду, що зменшує поріг входу в програмування.

Scratch

 найпопулярніше середовище для вивчення основ програмування

серед учнів початкової та середньої школи;

 блочний підхід дозволяє легко зрозуміти алгоритмічні конструкції

(цикли, умовні оператори, змінні тощо);

 можливість створення анімованих проєктів та ігор стимулює

зацікавленість учнів;

 використовується в навчальних програмах багатьох країн.

Code.org

 онлайн-платформа, що пропонує серію інтерактивних уроків з основ

програмування;

 використовує блочний код (Blockly) з можливістю переходу до

текстового програмування (JavaScript, Python);

 велика кількість навчальних матеріалів, завдань і проєктів для різних

рівнів підготовки;

 орієнтована на навчання у формі гри та вирішення завдань.

Blockly

 графічна бібліотека для створення візуального програмування;

 схожа на Scratch, але дозволяє поступовий перехід до текстового

коду;

13

 вбудовується в багато освітніх платформ (наприклад, Code.org);

 використовується для навчання основ алгоритмізації перед

переходом до мов високого рівня.

Переваги використання інтерактивних середовищ:

 візуальний підхід сприяє швидкому розумінню основ алгоритмізації;

 гейміфікація процесу навчання стимулює інтерес учнів;

 дає змогу швидко створювати проєкти без складного синтаксису мов

програмування.

Недоліки:

 обмежені можливості для навчання мов високого рівня;

 перехід до текстового програмування може викликати труднощі у

деяких учнів.

Онлайн-платформи для вивчення мов програмування

Онлайн-ресурси стають важливим доповненням до шкільного навчання,

оскільки пропонують доступ до інтерактивних курсів, автоматизованих завдань

та навчальних матеріалів [30].

CodeCombat

 освітня гра, що використовує Python або JavaScript для навчання

програмування;

 учні пишуть код для управління персонажами у квестах,

розв’язуючи логічні та алгоритмічні задачі;

 гейміфікація мотивує учнів до активного навчання;

 можливість застосування знань у реальних сценаріях.

Khan Academy

 пропонує безкоштовні інтерактивні курси з JavaScript, HTML/CSS та

SQL;

 учні можуть переглядати відеоуроки та одразу практикувати

написання коду;

 великий вибір завдань та проєктів;

14

 гнучкість у навчанні — кожен учень може працювати у власному

темпі.

Grasshopper

 мобільний додаток для вивчення основ JavaScript;

 підходить для новачків, оскільки використовує покроковий підхід;

 надає пояснення концепцій та практичні завдання у простій формі;

 підходить для самостійного навчання та закріплення матеріалу.

Переваги використання онлайн-платформ:

 доступність матеріалів у будь-який час;

 адаптивність навчання — учень сам вибирає темп і складність;

 автоматична перевірка коду та зворотний зв’язок;

 велика кількість інтерактивних завдань і практичних проєктів.

Недоліки:

 не всі ресурси є безкоштовними;

 вимагає самостійної роботи від учнів, що може бути проблемою без

належної мотивації;

 може потребувати додаткового пояснення з боку вчителя.

Використання інтерактивних технологій у навчанні програмування є

ефективним підходом для учнів 7–9 класів. Інтерактивні середовища

програмування (Scratch, Blockly, Code.org) дозволяють зробити перші кроки у

програмуванні, розвинути алгоритмічне мислення та поступово перейти до

текстового коду. Онлайн-платформи (CodeCombat, Khan Academy, Grasshopper)

дають можливість учням самостійно розвивати навички, отримуючи миттєвий

зворотний зв’язок. Оптимальним є поєднання інтерактивних технологій із

класичними методами навчання, що сприяє глибшому засвоєнню знань та

підвищенню інтересу до програмування.

Гейміфікація у навчанні програмування

Гейміфікація стає одним із найефективніших способів зацікавити учнів

програмуванням [1]. Коли у навчальний процес додають ігрові елементи — рівні,

15

бали, досягнення чи невеликі змагання — учні охочіше беруться за завдання й

набагато активніше долучаються до роботи. Такий підхід робить навчання не

лише корисним, а й емоційно привабливим.

Використання ігрових підходів для мотивації

Ідея гейміфікації полягає у тому, щоб перенести знайомі механіки з

комп’ютерних ігор у навчання. Це можуть бути:

 система досягнень — учні отримують бейджі, «рівні» чи інші

заохочення за виконані завдання;

 рух по рівнях — матеріал подається невеликими частинами й

поступово ускладнюється;

 квести або місії — завдання об’єднують у сюжет чи певну ігрову

логіку;

 елементи змагання — рейтинг, порівняння результатів;

 сюжетний підхід — коли навчальні задачі вписані у вигадані історії.

Такі інструменти добре працюють, бо створюють відчуття прогресу й

дозволяють учням бачити свій результат.

Популярні ресурси з елементами гейміфікації

Для навчання програмування існує багато платформ, що вже мають

вбудовані ігрові механіки [37]:

 CodeCombat — учні проходять рівні, прописуючи дії героя мовами

Python або JavaScript;

 Scratch — діти створюють власні анімації та ігри й можуть

показувати їх однокласникам;

 CheckiO — задачі з Python, подані у вигляді ігрових місій;

 CodinGame — поєднання програмування з проходженням рівнів,

битвами та квестами.

Змагання та хакатони

Ще один ефективний спосіб мотивувати учнів — організовувати змагання.

Це можуть бути:

 шкільні та регіональні олімпіади з інформатики;

16

 хакатони, де учні працюють у командах над певним завданням у

визначений час;

 клуби програмування, де діти разом розв’язують задачі й

обговорюють алгоритми;

 онлайн-турніри на Codeforces, LeetCode, TopCoder та інших

платформах.

Такі формати допомагають учням перевірити свої сили, навчитись

працювати в команді та критично мислити.

Гейміфікація робить процес вивчення програмування живішим і

цікавішим. Вона допомагає не лише краще засвоювати матеріал, а й формує у

школярів внутрішню мотивацію вчитися й розвиватися.

1.3. Порівняльний аналіз мов програмування, які використовуються в

загальноосвітніх школах

Візуальні мови програмування для початківців

Візуальні мови програмування використовують графічні елементи замість

звичного текстового коду. Учень не пише команди вручну, а складає програму з

готових блоків, що значно спрощує перші кроки в програмуванні. Такий підхід

особливо добре підходить для молодших і середніх школярів, адже дозволяє

зосередитися на розумінні логіки та алгоритмів, не відволікаючись на синтаксис.

Scratch та Blockly: переваги й обмеження

Scratch — одна з найвідоміших середовищ для візуального програмування,

створена в MIT. Учні конструюють власні проєкти, перетягуючи блоки команд,

і таким чином швидко розуміють, як працюють цикли, умови, події та змінні.

Blockly — це платформа, на основі якої створюються різні навчальні

середовища, наприклад, ті, що використовуються на Code.org. Вона також

працює з блоками, але має важливу перевагу: створені в ній програми можуть

автоматично перетворюватися на код мовами Python, JavaScript та іншими.

Переваги Scratch і Blockly очевидні:

 простий та зрозумілий інтерфейс;

 неможливість зробити синтаксичну помилку;

17

 підтримка анімації, графіки, звуку;

 можливість підключати обладнання на кшталт Arduino чи micro:bit.

Втім, є і свої обмеження:

 створити складний або «серйозний» програмний продукт досить

важко;

 бракує гнучкості, яку дають текстові мови;

 під час переходу до Python чи JavaScript учні можуть відчувати

труднощі, адже потрібно звикати до написання коду вручну.

Вплив візуального програмування на формування алгоритмічного

мислення

Попри обмеження, візуальні мови програмування дуже ефективні на

стартовому етапі. Вони допомагають учням навчитися:

 будувати логіку програми крок за кроком;

 розділяти складні задачі на простіші;

 застосовувати базові конструкції — цикли, умови, змінні — у

зрозумілих і цікавих завданнях.

Завдяки цьому учні отримують міцний фундамент для подальшого

навчання. А коли вони вже впевнено працюють із блоками, можна поступово

переходити до текстових мов програмування.

Текстові мови програмування у шкільному курсі

Після того як учні освоюють основи алгоритмізації у візуальних

середовищах, логічно переходити до текстових мов програмування. У 7–9 класах

зазвичай працюють із Python, JavaScript та C++, адже ці мови достатньо прості

для старту, але водночас мають широкі можливості для навчання.

Python: мова, яка не лякає новачків

Python часто обирають першою текстовою мовою саме через його

простоту. Код виглядає зрозуміло і читається майже як звичайні інструкції.

Учням не потрібно хвилюватися про складні синтаксичні правила чи оголошення

типів змінних, тому вони швидше переходять до практичних завдань: створення

невеликих програм, роботи з графікою або обробки даних. Крім того, Python

18

підтримується багатьма освітніми платформами, що робить його зручним

інструментом для школи.

JavaScript: можливість одразу побачити результат

JavaScript зручний тим, що все, що написав учень, можна відразу запустити

у звичайному браузері. Це одразу захоплює, адже результат видно миттєво —

зміни на сторінці, анімації, інтерактивні елементи. Під час вивчення JavaScript

школярі знайомляться з основами веброзробки та починають розуміти, як

працюють сайти, якими вони користуються щодня. Жодних встановлень чи

складних налаштувань — вистачає браузера, тож навчатися можна буквально

будь-де.

C++: мова для тих, хто хоче глибше зануритися

C++ помітно складніший, ніж Python чи JavaScript, але саме в цьому і його

цінність. Учні, які прагнуть розібратися в алгоритмах і зрозуміти, як усе працює

«під капотом», отримують у C++ багато можливостей. Цю мову активно

використовують на олімпіадах з програмування, оскільки вона дозволяє

працювати з пам’яттю та створювати максимально швидкі програми. Початок

може бути непростим, але C++ дає міцний фундамент для подальшого вивчення

програмування.

Три мови — Python, JavaScript і C++ — органічно доповнюють одна одну

у шкільному курсі. Поступовий перехід від візуальних середовищ до текстового

програмування дає змогу розвивати навички без зайвого стресу та формує

цілісне розуміння того, як створюються програми.

Критерії вибору мови програмування для навчання

Вибір мови програмування для учнів 7–9 класів — це не просто

формальність. Від нього залежить, наскільки цікаво й доступно школярі

сприйматимуть подальше навчання. Щоб уроки приносили результат, важливо

врахувати кілька чинників: наскільки мова проста для сприйняття, чи є для неї

достатньо навчальних матеріалів та яку роль вона відіграє у сучасній IT-сфері.

Простота синтаксису

19

Учням цього віку важливо працювати з мовами, які не перевантажені

зайвими деталями. Програма має бути логічною та зрозумілою, щоб діти могли

зосередитися на головному — як працюють алгоритми і як будуються прості

програми.

Python у цьому сенсі найкомфортніший для старту: його команди

нагадують прості англійські фрази, тому учні швидко розуміють базові

принципи програмування.

JavaScript трохи складніший — у ньому більше символів та дужок, але зате

з першого ж уроку показує, як працює веб і що стоїть за сучасними сайтами.

C++ є найбільш вимогливим: тут потрібно визначати типи змінних, уважно

працювати з пам’яттю та дотримуватися суворої структури. Для новачків це

непросто, проте саме ця мова дає можливість глибше зрозуміти внутрішню

логіку роботи комп’ютера.

Якщо говорити про найзручніший старт, першість безперечно за Python.

JavaScript варто обирати для класів, які працюють із вебтехнологіями, а C++ —

для груп, орієнтованих на олімпіадні чи алгоритмічні задачі.

Доступність навчальних матеріалів

Важливим є і те, наскільки легко знайти якісні пояснення, завдання чи

відеоуроки.

Python має найширший вибір матеріалів для новачків: українські

підручники, онлайн-платформи, інтерактивні тренажери та докладні курси.

JavaScript також добре підтримується: є сучасні навчальні платформи на

кшталт Code.org чи Grasshopper, а також детальна документація.

C++ у шкільних курсах трапляється рідше, але саме для алгоритмічного

програмування ця мова має багато якісних ресурсів: спеціалізовані сайти,

онлайн-олімпіади та збірки задач, які допомагають тренувати мислення й

готуватися до змагань.

Якщо ж оцінювати мови за доступністю навчальних матеріалів, то

першість знову отримує Python — під нього створено найбільше підручників,

відеоуроків і тренажерів для початківців.

20

Застосування в реальному світі

Для учнів важливо розуміти, де саме вони зможуть використати нові

вміння — це підсилює інтерес і мотивацію.

Python сьогодні є однією з найпопулярніших мов і використовується в

різних галузях: штучному інтелекті, аналізі даних, автоматизації, кібербезпеці та

навіть у веброзробці.

JavaScript лежить в основі роботи сайтів і браузерних застосунків, тож його

знання напряму пов’язане з веброзробкою.

C++ обирають там, де важлива особливо висока продуктивність: у

створенні комп’ютерних ігор, робототехніці, системному програмуванні та

промислових застосунках.

Під час вибору мови програмування для учнів 7–9 класів доцільно

враховувати три ключові фактори:

 наскільки зрозумілим і легким для читання є код;

 чи доступні якісні навчальні ресурси;

 чи широко ця мова використовується у сучасних ІТ-сферах.

З огляду на всі ці критерії, Python є найкращою мовою для старту.

JavaScript та C++ можуть стати чудовим доповненням — перший для тих, хто

цікавиться веброзробкою, а другий — для учнів, які хочуть зануритися в

алгоритмічне мислення та складніші технічні аспекти програмування.

1.4. Вікові особливості учнів 7–9 класів у контексті вивчення

програмування

Когнітивні особливості підлітків

Розвиток когнітивних здібностей у підлітковому віці є важливим аспектом,

який визначає ефективність навчання програмуванню. Учні 7–9 класів

перебувають у періоді активного формування логічного, абстрактного та

алгоритмічного мислення, що є основою для успішного засвоєння мов

програмування [10].

Розвиток логічного мислення

21

Логічне мислення є ключовою складовою пізнавальної діяльності, яка

дозволяє учням аналізувати інформацію, будувати умовиводи та знаходити

закономірності.

Під час вивчення програмування підлітки активно розвивають логічне

мислення. Уже на базових прикладах вони вчаться бачити причинно-наслідкові

зв’язки — наприклад, коли працюють з умовами if-else і розуміють, чому

програма поводиться так чи інакше. Учні також поступово опановують

декомпозицію: складне завдання вони навчаються ділити на кілька простіших, а

потім вирішувати їх крок за кроком. Не менш важливою є навичка налагодження

коду, коли дитина аналізує свою програму, знаходить помилки та виправляє їх.

Через такі завдання школярі тренують уміння аналізувати інформацію, робити

логічні висновки та будувати чітку послідовність дій.

Абстрактне та алгоритмічне мислення

Абстрактне мислення дає можливість учням працювати не лише з

конкретними прикладами, а й з узагальненими моделями. У програмуванні це

добре помітно: діти починають розуміти, що змінна — це не просто число чи

слово, а своєрідна «скринька» для даних; що масиви та списки — це способи

впорядкувати інформацію; а функції — окремі логічні блоки, які можна

використовувати багато разів. З часом школярі поступово звикають до таких

абстракцій і вчаться мислити більш системно.

Алгоритмічне мислення — це здатність будувати чітку, послідовну схему

дій, яка приводить до потрібного результату. Під час програмування ця навичка

формується природно: учні створюють алгоритми, експериментують із

розгалуженнями, циклами та іншими конструкціями. Пізніше вони намагаються

не просто написати програму, а зробити її кращою — швидшою, коротшою чи

ефективнішою.

Учні 7–9 класів перебувають на етапі активного розвитку саме таких типів

мислення, тому навчання програмуванню має бути поступовим. Коли матеріал

подається від простого до складного, учні легше засвоюють нові поняття та

впевненіше застосовують їх у практичних ситуаціях. Такий підхід допомагає їм

22

не просто виконувати завдання, а й усвідомлювати логіку, що стоїть за кожним

кроком.

Мотиваційні чинники у вивченні програмування

Мотивація значною мірою визначає, наскільки успішно учні 7–9 класів

опановують програмування [9]. У підлітковому віці інтереси можуть

змінюватися дуже швидко, і на ставлення до навчання впливають як особисті

захоплення, так і соціальне оточення. Тому, щоб уроки програмування були

результативними, потрібно не просто подавати матеріал, а й постійно

підтримувати та зміцнювати інтерес учнів.

Інтерес до комп’ютерних технологій

Одним із найпотужніших стимулів для школярів є їхній природний інтерес

до комп’ютерів і всього, що з ними пов’язано. Підлітки щодня користуються

смартфонами, грають у комп’ютерні ігри, переглядають відео, сидять у

соцмережах — тобто постійно взаємодіють із цифровим середовищем. Тому

бажання зрозуміти, як працюють програми та ігри, які вони бачать на екрані,

виникає у них цілком природно.

Цей інтерес підтримується кількома чинниками:

Повсякденна взаємодія з технікою. Учні користуються гаджетами щодня,

тому їм цікаво дізнатися, що саме «керує» знайомими застосунками й іграми.

Улюблені комп’ютерні ігри. Багато підлітків мріють створити власну гру

або хоча б зрозуміти, як відбувається її розробка — це чудовий привід зацікавити

їх програмуванням.

Цікавість до вебтехнологій. Соцмережі, сайти, чат-боти — усе це здається

школярам знайомим, а тому вони охоче пробують створити щось подібне

власноруч.

Саме тому хороший спосіб мотивувати учнів — запропонувати їм створити

простий, але цікавий проєкт, пов’язаний з їхніми щоденними інтересами: нехай

це буде невелика гра, мінісайт або власний бот.

Практичне застосування як джерело мотивації

23

Окремим важливим чинником мотивації є можливість побачити реальний

результат своєї роботи. Коли учень створює щось власними руками — нехай

навіть дуже просте — це викликає почуття гордості і бажання рухатися далі.

До практичних мотиваторів належать:

Реальні проєкти. Наприклад, створення сайту для шкільної події або

написання невеликої програми, яка справді вирішує певну задачу.

Проєктний підхід у навчанні. Робота над проєктами дає можливість учням

бачити власний прогрес і відчувати важливість того, що вони роблять.

Конкурси, олімпіади, хакатони. Участь у таких заходах мотивує не лише

результатом, а й командною роботою, реакцією суддів і можливістю порівняти

свої вміння з іншими.

Коли учні мають перед собою зрозумілу та досяжну мету — створити

програму, підготувати проєкт або взяти участь у конкурсі — їхня зацікавленість

зростає, а разом із нею й ефективність навчання.

Мотивація у навчанні програмування — складний і багатогранний процес.

Найкраще він працює тоді, коли поєднуються внутрішні мотиви (інтерес до

технологій, бажання створювати власні проєкти) і зовнішні стимули (змагання,

проєктна робота, похвала, реальні результати).

Інтерес учнів до сучасних технологій та можливість побачити практичне

застосування знань роблять вивчення програмування не лише корисним, а й

захопливим. Використання реальних проєктів, участь у конкурсах і залучення

сучасних інструментів допомагає учням 7–9 класів не просто вивчати матеріал,

а й зберігати щирий інтерес до навчання.

Труднощі у засвоєнні мов програмування

Вивчення мов програмування — непросте завдання для учнів 7–9 класів.

Воно вимагає не тільки запам’ятовування синтаксису, а й уміння мислити

алгоритмічно та послідовно. Попри те, що програмування займає дедалі

важливіше місце у шкільному курсі інформатики, багато учнів стикаються з

певними труднощами. Умовно їх можна поділити на дві групи: типові помилки

та проблеми, пов’язані з розумінням алгоритмів і синтаксичних конструкцій.

24

Найпоширеніші помилки учнів

Помилки — це природна частина навчання програмуванню. Часто вони

виникають через недопрацювання в теорії або складнощі, пов’язані з

особливостями мови програмування.

Основні види помилок:

Синтаксичні помилки:

 неправильне використання дужок, пропущені крапки з комою,

помилки у відступах (що особливо критично в Python).

 невірне написання ключових слів, наприклад Print замість print.

 використання змінних до їх оголошення (актуально для C++ та

інших строготипізованих мов).

Логічні помилки

 порушення правильної послідовності команд.

 неправильно сформульовані умови у конструкціях if-else.

 помилки в циклах, наприклад створення нескінченного циклу.

Проблеми зі змінними

 невірний вибір типу даних.

 присвоєння неправильних значень.

 використання змінних без попередньої ініціалізації.

Помилки під час роботи з функціями

 відсутність повернення значення.

 неправильне передавання аргументів.

 використання функції до її оголошення.

Труднощі з налагодженням коду (debugging)

 нерозуміння тексту помилок, які повідомляє компілятор чи

інтерпретатор.

 звичка виправляти помилки методом «тику», без аналізу причин.

Проблеми з розумінням алгоритмів і синтаксису

25

Програмування вимагає сформованого алгоритмічного мислення, а у

багатьох семикласників–дев’ятикласників воно ще перебуває на стадії розвитку.

Сам синтаксис теж може створювати додаткові бар’єри.

Основні труднощі:

Нестача базових знань з алгоритмізації

 учні не завжди вміють будувати алгоритм до того, як почати писати

код;

 часто виникають труднощі з розумінням послідовності, розгалужень

і циклів.

Складність переходу від візуального до текстового програмування

 після Scratch чи Blockly не всім легко звикнути до мови, де потрібно

вручну вводити кожну команду;

 відсутність блокових підказок ускладнює запам’ятовування

синтаксису.

Недостатня математична база

 нерозуміння математичної логіки уповільнює роботу з умовами та

змінними;

 проблеми можуть виникати під час роботи з масивами,

координатами та логічними операціями.

Страх перед складністю програмування

 частина учнів вважає програмування «надто важким» і через це

швидко втрачає мотивацію;

 боязнь помилитися заважає експериментувати і пробувати власні

рішення.

Шляхи подолання труднощів

Щоб допомогти учням упоратися з труднощами, варто використовувати

різні методичні прийоми:

 навчати алгоритмізації через логічні задачі, пропонувати складати

алгоритми природною мовою перед написанням коду.

26

 вводити синтаксис поступово: спочатку змінні та оператори, а вже

пізніше — функції та складні структури.

 пояснювати типові помилки, показувати покрокове налагодження,

навчати читати повідомлення компілятора;

 підтримувати мотивацію через гейміфікацію, проєкти та участь у

конкурсах.

Отже, розуміння того, з якими саме труднощами стикаються учні, дозволяє

вчителям обирати більш ефективні методики та робити навчання програмуванню

доступнішим і результативнішим.

Рекомендації щодо адаптації навчального матеріалу

Навчання програмуванню учнів 7–9 класів потребує продуманого підходу,

який враховує їхні вікові можливості, рівень розвитку алгоритмічного мислення

та особисту мотивацію. Щоб допомогти школярам легше засвоювати матеріал,

важливо не лише підібрати відповідні ресурси, а й правильно організувати

подачу інформації. Умовно можна виділити два основні напрями адаптації:

використання практичних завдань і реальних проєктів та активна роль учителя у

підтримці учнів.

Використання прикладних задач та реальних проєктів

Одним із найефективніших способів навчити програмувати є орієнтація на

практичні завдання. Учні набагато краще засвоюють матеріал, коли бачать, що

ці знання можна застосувати в житті.

Основні підходи до адаптації завдань:

Завдання з реальним змістом:

 створення простих застосунків, як-от калькулятор чи конвертер

валют;

 анімації або інтерактивні історії у Scratch чи Python Turtle;

 перші спроби у створенні простих чат-ботів на Python або JavaScript.

 Проєктно-орієнтоване навчання

 розробка власних невеликих програм і вебсайтів, простих ігор чи

систем тестування;

27

 принцип поступовості: від мікропроєктів до більш складних

програм.

Гейміфікація

 завдання у формі ігрових рівнів чи місій;

 використання платформ із системою нагород (CodeCombat, Scratch,

Grasshopper);

 проведення міні-хакатонів, квестів та конкурсів.

Урахування різного рівня підготовки

 початківцям — візуальні середовища, мінімум синтаксису;

 учням середнього рівня — Python або JavaScript у простих

середовищах;

 просунутим — робота з алгоритмами, C++, SQL, HTML/CSS.

Роль учителя у подоланні труднощів

Учитель відіграє ключову роль у тому, як учні сприймають програмування.

Саме він допомагає розібратися в складних темах, створює мотиваційне

середовище та підтримує школярів на кожному етапі навчання.

Основні напрями підтримки

1. Зрозуміле пояснення складного матеріалу

Учням важливо, щоб навіть складні теми були подані максимально

доступно. Для цього вчитель може:

 використовувати прості аналогії, наприклад пояснювати змінну як

«контейнер» для даних;

 розбирати алгоритми крок за кроком, використовуючи блок-схеми

чи псевдокод;

 показувати роботу коду на реальних прикладах і пояснювати, що

відбувається в кожному рядку.

2. Індивідуальний підхід

Кожен учень має свої сильні сторони та моменти, де потрібна додаткова

допомога. Тому важливо:

28

 визначати, кому що дається легше, а над чим потрібно попрацювати;

 пропонувати додаткові пояснення або інші матеріали тим, хто

потребує підтримки;

 заохочувати учнів до самостійних експериментів і пошуку рішень.

3. Розвиток уміння розв’язувати проблеми самостійно

Щоб учні почувалися впевненіше, варто навчати їх:

 основам налагодження коду й правильного аналізу помилок;

 принципу «спочатку продумай алгоритм — потім пиши код»;

 користуватися документацією, тематичними форумами та

навчальними онлайн-ресурсами.

4. Підтримка та мотивація

Мотивація зберігається тоді, коли учень відчуває успіх і підтримку. Для

цього ефективно:

 відзначати навіть невеликі досягнення;

 організовувати роботу в парах або групах, де учні можуть

допомагати одне одному;

 регулярно обговорювати труднощі, з якими вони зіштовхнулися, та

спільно шукати способи їх подолання.

Адаптація навчального матеріалу має поєднувати практичні завдання,

проєктну діяльність, елементи гри та постійну педагогічну підтримку. Такий

підхід робить вивчення програмування для учнів 7–9 класів зрозумілішим і

цікавішим, допомагає сформувати алгоритмічне мислення, розвинути навички

написання коду й зберегти мотивацію до подальшого навчання у сфері IT.

29

ВИСНОВКИ ДО ПЕРШОГО РОЗДІЛУ

У першому розділі здійснено всебічний теоретичний аналіз особливостей

вивчення мов програмування в закладах загальної середньої освіти, зокрема у 7–

9 класах. Розгляд нормативних документів, державних стандартів і типових

навчальних програм показав, що сучасна шкільна інформатика орієнтована на

формування в учнів алгоритмічного, логічного та творчого мислення, а також на

розвиток базових умінь програмування. Державний стандарт базової середньої

освіти визначає програмування як одну з ключових складових цифрової

компетентності, що потребує цілеспрямованого педагогічного супроводу та

поступового ускладнення навчального матеріалу.

Аналіз навчальних програм і підручників засвідчив, що в школах

використовують різні мови програмування — від візуальних середовищ, таких

як Scratch і Blockly, до текстових мов, зокрема Python і JavaScript. Таке поєднання

забезпечує поступовий перехід учнів від наочного програмування до роботи з

реальними програмними конструкціями. Разом з тим вибір мови програмування

повинен ґрунтуватися на її доступності, зрозумілості для підлітків та можливості

застосування в реальних практичних завданнях.

У роботі розглянуто провідні педагогічні підходи до організації навчання

програмування. Класичні методи (лекційно-практичний, проблемний,

проєктний) залишаються актуальними, проте їх ефективність значно зростає за

умови використання інтерактивних платформ, гейміфікації та сучасних онлайн-

ресурсів. Інтерактивні середовища та освітні платформи сприяють формуванню

стійкої навчальної мотивації, а також забезпечують доступність матеріалу для

учнів із різними рівнями підготовки.

Окрему увагу приділено віковим та когнітивним особливостям учнів

7–9 класів. У цей період формується здатність до абстрактного мислення,

розвивається логічність, уміння аналізувати та проєктувати алгоритми. Водночас

школярі нерідко зіштовхуються з труднощами у розумінні синтаксису, побудові

алгоритмів і виправленні помилок. Це свідчить про необхідність адаптації

30

навчального матеріалу, впровадження прикладних завдань та системної

педагогічної підтримки.

Отже, теоретичний аналіз підтверджує, що ефективність навчання

програмування у 7–9 класах зумовлена поєднанням трьох ключових чинників:

відповідності навчального змісту віковим можливостям учнів, використання

сучасних педагогічних технологій та активної ролі вчителя як фасилітатора й

наставника. Отримані результати створюють основу для розробки методики

формування умінь програмування.

31

РОЗДІЛ 2. МЕТОДИКА ФОРМУВАННЯ УМІНЬ ПРОГРАМУВАННЯ В

УЧНІВ 7–9 КЛАСІВ

2.1. Концептуальні засади побудови методики

Психолого-педагогічні основи формування умінь програмування

Формування умінь програмування в учнів 7–9 класів є складним процесом,

що поєднує розвиток логічного, алгоритмічного та творчого мислення. У цьому

віці школярі переходять від конкретно-образного до абстрактно-логічного

мислення [20], тому особливо важливо забезпечити поступове ускладнення

навчального матеріалу та створити умови для активної розумової діяльності.

Психологи (Ж. Піаже, Л. Виготський, С. Рубінштейн) зазначають, що

підлітковий вік характеризується формуванням здатності до аналізу,

узагальнення та самостійного прийняття рішень [7]. Це безпосередньо пов’язано

з навчанням програмування, адже створення алгоритмів і програм вимагає від

учня вміння логічно мислити, робити припущення, планувати послідовність дій

та передбачати результати.

У педагогічному аспекті процес навчання програмування має базуватись

на принципах діяльнісного підходу [31], де учень виступає активним учасником

навчального процесу. Знання не передаються у готовому вигляді, а набуваються

в результаті самостійної пізнавальної діяльності. Такий підхід дозволяє не лише

формувати знання про мови програмування, а й розвивати ключові

компетентності — інформаційно-цифрову, математичну, комунікативну та

уміння вчитися впродовж життя.

Важливу роль у формуванні вмінь програмування відіграє мотиваційний

компонент [16]. Підлітки охочіше залучаються до навчання, коли бачать

практичний результат своєї діяльності — робочу програму, гру чи анімацію.

Тому доцільно використовувати навчальні середовища, що забезпечують

швидкий зворотний зв’язок (Scratch, Code.org, Replit, Thonny тощо). Це сприяє

розвитку впевненості у власних силах і підвищує зацікавленість предметом.

З психолого-педагогічної точки зору, ефективність навчання

програмуванню підвищується за умови поєднання таких чинників [12]:

32

 поступовість подання матеріалу — від простих дій до складних

конструкцій;

 наочність — використання блокових схем, візуальних мов,

прикладів з реального життя;

 активна діяльність учня — виконання практичних завдань, проєктів,

міні-досліджень;

 рефлексія — усвідомлення помилок, аналіз власного коду,

обговорення способів розв’язання.

Таким чином, психолого-педагогічні основи методики формування умінь

програмування полягають у створенні навчального середовища, що стимулює

пізнавальну активність, забезпечує індивідуальний підхід та сприяє розвитку

мислення. Важливо, щоб учень не лише засвоював готові знання, а й поступово

переходив від виконавчої діяльності до творчої, що відповідає закономірностям

інтелектуального розвитку підлітка.

Необхідність удосконалення традиційних підходів до навчання

програмування

Традиційні методи навчання програмування, що тривалий час

використовувались у шкільній практиці, здебільшого орієнтовані на

репродуктивне засвоєння знань [11] — учень слухає пояснення вчителя, записує

готові приклади програм і повторює дії за зразком. Такий підхід забезпечує

певний рівень обізнаності, але часто не формує справжнього розуміння логіки

програмування та не стимулює самостійне мислення.

У шкільних умовах це проявляється в тому, що більшість учнів можуть

повторити приклад з підручника, але стикаються зі складнощами, коли потрібно

змінити програму [36] або створити власну. Тобто вони знають як зробити, але

не завжди розуміють чому саме так. Це свідчить про необхідність перегляду

підходів до організації навчального процесу.

Крім того, у сучасному світі програмування швидко змінюється [29]:

з’являються нові мови, середовища, методики. Тому викладання цього предмета

має бути не просто передачею знань, а навчанням мислити алгоритмічно,

33

знаходити рішення, експериментувати й досліджувати. Учень має виступати не

пасивним слухачем, а активним творцем.

Серед основних недоліків традиційних підходів можна виділити такі:

 надмірна теоретизація матеріалу — учні часто не бачать практичного

сенсу програмування;

 відсутність диференціації — усі учні виконують однакові завдання,

незалежно від рівня підготовки;

 низький рівень мотивації — навчання сприймається як складне і

відірване від реального життя;

 обмежене використання сучасних цифрових ресурсів — замість

інтерактивних середовищ часто використовуються лише підручники

або текстові приклади.

Сучасна педагогіка вимагає переходу до активних та особистісно

орієнтованих методів навчання, які сприяють розвитку компетентностей, а не

лише засвоєнню фактів. Це означає, що акцент варто робити не на відтворенні

знань, а на їх застосуванні, аналізі та творчому використанні.

Одним із шляхів удосконалення традиційного підходу є створення нової

методики, побудованої на принципах системності, поетапності та мотиваційного

залучення учнів. Її мета — допомогти школярам не просто навчитися писати код,

а навчитися мислити як програмісти: бачити проблему, планувати дії,

аналізувати результати та самостійно знаходити помилки.

Таким чином, удосконалення методики навчання програмування є

об’єктивною необхідністю, продиктованою як змінами у змісті шкільної

інформатики, так і запитами сучасного суспільства. Новий підхід має зробити

навчання більш гнучким, практичним і орієнтованим на розвиток мислення, що

відповідає потребам учнів 7–9 класів і сучасним тенденціям освіти.

Основна ідея та принципи запропонованої методики (адаптованої моделі

за таксономією Блума)

Основна ідея розробленої методики полягає у поетапному формуванні

вмінь програмування в учнів 7–9 класів на основі спрощеної та адаптованої

34

моделі таксономії Блума. Класична таксономія Блума визначає шість рівнів

пізнавальної діяльності [35]: знання, розуміння, застосування, аналіз, синтез і

оцінювання. Проте у навчанні програмування така модель потребує певної

модифікації, оскільки не всі її рівні однаково ефективні для учнів середнього

шкільного віку, а деякі, навпаки, потребують уточнення чи розширення.

Запропонована методика зберігає загальну логіку поступового розвитку

пізнавальних дій [13], але адаптує її до специфіки програмування та вікових

особливостей школярів. У результаті сформовано п’ятиетапну модель, де кожен

рівень відображає певний етап становлення вмінь програмування:

1. Усвідомлення — розуміння базових понять програмування, синтаксису,

логічних структур та алгоритмів. На цьому етапі учень знайомиться з основними

конструкціями мови програмування та вчиться пояснювати, що саме виконує

програма.

2. Застосування — відпрацювання навичок написання простих програм за

зразком. Учні вчаться використовувати змінні, умови, цикли, вводити і виводити

дані, перевіряють роботу свого коду.

3. Конструювання — створення власних програм, у яких поєднуються

кілька структур. Це дає змогу перейти від шаблонних дій до самостійного

планування алгоритмів.

4. Аналіз і вдосконалення — пошук і виправлення помилок, оптимізація

коду, порівняння різних способів розв’язання однієї задачі. Учень вчиться

мислити критично і оцінювати ефективність власних рішень.

5. Творче застосування — реалізація власних проєктів, мініігор,

інтерактивних програм. Цей рівень сприяє розвитку творчості, самовираження

та підвищує мотивацію до подальшого навчання.

Таким чином, методика орієнтується не лише на засвоєння фактів, а

передусім на розвиток мислення — від розуміння до творчого використання

знань. Вона поєднує когнітивний, діяльнісний та мотиваційний компоненти, що

забезпечує цілісне формування компетентності програмування.

Основні принципи запропонованої методики:

35

 поетапність — кожен етап логічно продовжує попередній,

забезпечуючи поступовий розвиток умінь;

 практична спрямованість — навчання базується на виконанні

реальних завдань, створенні програм, ігор, анімацій;

 доступність і наочність — використання середовищ, які дають

швидкий результат (Scratch, Python, JavaScript);

 рефлексивність — постійне осмислення учнями власної діяльності,

аналіз успіхів і помилок;

 мотиваційна підтримка — застосування гейміфікації, елементів

змагання, творчих проєктів.

Запропонована модель спрямована на підвищення ефективності навчання

за рахунок активного залучення учнів до процесу програмування, створення

ситуацій успіху та розвитку впевненості у власних силах. Її перевага полягає у

поєднанні системності класичної педагогічної моделі з сучасними вимогами до

цифрової освіти.

2.2. Модель формування умінь програмування

(адаптована таксономія програмування)

Етап 1. Усвідомлення (розуміння базових понять, синтаксису, структур

керування)

Перший етап формування умінь програмування — етап усвідомлення — є

фундаментом для подальшого розвитку програмістських навичок учнів. На

цьому рівні основна мета полягає в тому, щоб учні зрозуміли сутність

програмування як процесу, а не лише механічно запам’ятали правила написання

коду.

Учні мають усвідомити, що програмування — це спосіб розв’язання задач

[4] за допомогою алгоритмів, виражених певною мовою. Важливо, щоб на цьому

етапі вони зрозуміли основні поняття:

 алгоритм, програма, виконавець, середовище виконання програми;

 змінна, тип даних, операції над даними;

 структури керування — послідовність, розгалуження, повторення.

36

Навчання має здійснюватися через приклади з реального життя, які

демонструють застосування алгоритмічного мислення. Наприклад, учитель

може запропонувати учням описати алгоритм приготування чаю або руху

персонажа у грі, після чого — перевести його на мову програмування

(наприклад, JavaScript чи Python). Це допомагає зробити зв’язок між абстрактним

мисленням і конкретною мовною конструкцією.

Особлива увага приділяється розумінню синтаксису мови програмування.

На цьому етапі учні знайомляться з правилами запису команд, поняттям «блоку

коду», «коментаря», дужок, відступів тощо. Проте акцент робиться не на

механічному запам’ятовуванні синтаксичних конструкцій, а на усвідомленні їх

призначення. Наприклад, не просто що if означає «якщо», а що це засіб для

прийняття рішень у програмі.

Методично цей етап реалізується через:

 мінілекції з демонстрацією прикладів коду;

 виконання простих вправ на визначення результату роботи коротких

програм;

 інтерактивні середовища (наприклад, Scratch, repl.it, Code.org), які

дають змогу відразу бачити ефект від написаного коду;

 обговорення типових помилок і пояснення причин їх виникнення.

Ключовим результатом цього етапу є свідоме розуміння базових елементів

програмування та вміння читати і пояснювати прості програми. Учень ще не

обов’язково може самостійно писати складні програми, але вже розуміє логіку їх

побудови, бачить взаємозв’язок між алгоритмом і кодом, усвідомлює, що кожна

інструкція має конкретну функцію у загальній структурі програми.

Таким чином, етап усвідомлення створює когнітивний фундамент для

подальших рівнів — відтворення, застосування і творчості, формуючи в учнів

цілісне уявлення про програмування як про інтелектуальну діяльність,

спрямовану на розв’язання задач.

37

Етап 2. Застосування (написання простих алгоритмів і програм за

зразком)

Другий етап формування умінь програмування — етап застосування —

передбачає перехід від пасивного розуміння основ до активного відтворення

знань у практичній діяльності. На цьому рівні учень уже не просто спостерігає

або аналізує готові приклади, а починає самостійно створювати короткі

програми за наданими алгоритмами або зразками.

Основна мета цього етапу — навчити учнів правильно використовувати

вивчені конструкції мови програмування для створення найпростіших програм.

Учні мають закріпити навички написання програм із лінійною структурою,

умовними переходами та циклами, а також навчитися працювати з введенням і

виведенням даних.

На цьому етапі доцільно використовувати навчальні завдання

репродуктивного характеру, які мають чітко визначену мету, покрокову

інструкцію та приклад виконання. Наприклад:

 створення програми, що обчислює площу прямокутника за

введеними сторонами;

 написання алгоритму перевірки, чи є число парним;

 реалізація програми, що виводить таблицю множення;

 створення нескладного лічильника або калькулятора.

Такі завдання допомагають учням засвоїти типові шаблони програмування

— способи розв’язання стандартних задач, які часто трапляються у різних мовах

і середовищах.

Методично цей етап передбачає:

 роботу за зразком — учитель показує приклад готової програми,

пояснюючи її структуру та логіку, після чого учні створюють

подібну, але з невеликими змінами;

 вправи на доповнення коду — учням пропонується фрагмент

програми, у якому потрібно заповнити пропущені елементи;

38

 алгоритмічні картки або блок-схеми — для того, щоб учні навчилися

мислити алгоритмічно перед написанням коду;

 роботу в парах або групах — для взаємоперевірки й обговорення

різних способів розв’язання задачі.

Під час виконання практичних робіт важливо, щоб учитель не просто

контролював правильність синтаксису, а звертав увагу на розуміння логіки

виконання програми. Якщо учень змінює параметри, змінні чи умови, він має

передбачати, як це вплине на результат. Такий підхід сприяє формуванню

алгоритмічного мислення — уміння аналізувати проблему й будувати

послідовність дій для її розв’язання.

На цьому етапі учні також стикаються з першими типовими помилками —

синтаксичними (неправильне написання команд, дужок, лапок) та логічними

(неправильна послідовність команд, некоректні умови) [19]. Розбір таких

помилок є важливою складовою навчання, оскільки допомагає зрозуміти, як

працює компілятор або інтерпретатор, і чому навіть невелика неточність може

призвести до неправильного результату.

Результатом етапу застосування є формування в учнів умінь:

 створювати прості програми за готовими алгоритмами;

 коригувати програми, змінюючи дані, умови або дії;

 аналізувати роботу власного коду й усувати помилки.

Отже, цей етап є перехідним від розуміння теоретичних засад

програмування до самостійної діяльності, забезпечуючи практичну базу для

наступного рівня — етапу варіювання та творчого використання знань, де учні

почнуть самостійно розробляти власні алгоритми.

Етап 3. Конструювання (самостійне створення програм із

використанням кількох структур)

Третій етап — етап конструювання — передбачає перехід учнів від

відтворення типових алгоритмів до самостійного створення програм, у яких

поєднуються різні елементи мови програмування: лінійні, розгалужені та

39

циклічні структури, робота з даними, функціями та простими структурами даних

(масивами, списками тощо).

Мета цього етапу полягає у розвитку самостійності, логічного мислення та

здатності до комбінування знань. Учень уже не діє за шаблоном, а має сам

визначити, які саме інструкції та структури потрібні для розв’язання поставленої

задачі.

Основний зміст етапу

На цьому рівні учні виконують завдання, які потребують:

 поєднання кількох структур керування — наприклад, умовні

оператори всередині циклів;

 використання допоміжних змінних або масивів;

 розробки невеликих прикладних програм, які мають практичну

цінність (калькулятор, гра «Вгадай число», аналізатор оцінок,

генератор паролів тощо) [32];

 побудови алгоритмів за описом проблеми, а не за готовим зразком.

На цьому етапі важливо формувати в учнів уміння переходити від реальної

задачі до алгоритмічного опису, тобто:

1. Аналізувати умову задачі, виокремлювати дані та шукані результати.

2. Обирати відповідні структури керування (послідовність, розгалуження,

повторення).

3. Складати блок-схему або псевдокод.

4. Реалізовувати алгоритм мовою програмування.

5. Тестувати програму та виправляти помилки.

Методичні прийоми

Для розвитку вмінь конструювання доцільно застосовувати:

 практичні проєкти з кількома рівнями складності, де учень сам

планує алгоритм розв’язку;

 евристичні бесіди — коли вчитель не дає готових рішень, а

спрямовує учня запитаннями;

40

 роботу в середовищах із миттєвим зворотним зв’язком (наприклад,

Code.org, Replit, p5.js), що дозволяє експериментувати з кодом і

бачити результат;

 змагання або творчі завдання — наприклад, створити гру або

мініпрограму з власною ідеєю.

Приклади завдань для етапу конструювання

 Створити програму, яка виводить усі парні числа від 1 до заданого

користувачем числа.

 Розробити програму, що визначає середнє арифметичне введених

оцінок.

 Написати гру, де користувач має відгадати випадкове число.

 Створити калькулятор для обчислення площі фігур за вибором

користувача.

Такі завдання сприяють формуванню практичного алгоритмічного

мислення, розвивають навички структурування програми на окремі логічні

блоки та відлагодження коду.

Очікувані результати

Після завершення цього етапу учень повинен уміти:

 самостійно створювати програму з використанням кількох структур

керування;

 розробляти алгоритм на основі текстової задачі;

 перевіряти програму, знаходити й виправляти помилки;

 оцінювати ефективність власного рішення.

Таким чином, етап конструювання є центральною ланкою адаптованої

таксономії програмування, оскільки саме тут відбувається перехід від

навчальних дій до творчого застосування знань, що формує фундаментальні

вміння програмування, необхідні для подальшого навчання в старшій школі або

самостійної розробки проєктів.

41

Етап 4. Аналіз і вдосконалення (пошук помилок, оптимізація, робота з

відлагодженням)

Четвертий етап адаптованої таксономії програмування — аналіз і

вдосконалення — має на меті сформувати в учнів уміння критично оцінювати

власний код, знаходити помилки, покращувати структуру програми та

підвищувати її ефективність. Якщо на попередньому етапі учень навчався

самостійно створювати програму, то тепер він переходить на якісно вищий

рівень — усвідомленого аналізу результатів власної діяльності.

Сутність етапу

Етап аналізу та вдосконалення відповідає переходу від рівня

"застосування" до "оцінювання" у класичній таксономії Блума. Проте у нашій

адаптованій моделі цей етап не є теоретичним, а практично орієнтованим: учні

безпосередньо працюють із власними або чужими програмами, щоб:

 знайти логічні, синтаксичні чи структурні помилки;

 зрозуміти причину їх виникнення;

 оптимізувати алгоритм або покращити зручність коду;

 удосконалити програму шляхом додавання нових функцій або

спрощення структури.

Основні завдання етапу

Розвиток навичок відлагодження (debugging)

Учні навчаються працювати з помилками, читати повідомлення

компілятора, користуватися вбудованими інструментами налагодження в

середовищах програмування (наприклад, Chrome DevTools, IDLE, Visual Studio

Code) [38]. Вони мають зрозуміти, що помилка — це не невдача, а підказка, яка

допомагає глибше осмислити логіку програми.

Формування уміння аналізувати код

Учні вчаться оцінювати логіку виконання програми: чи не дублюються дії, чи не

можна спростити обчислення, чи доцільно використано змінні.

Наприклад, програма, яка обчислює суму чисел у циклі, може бути вдосконалена

шляхом використання функцій або вбудованих методів.

42

Оптимізація програм

Поступово учні знайомляться з поняттями ефективності коду: час виконання,

кількість операцій, споживання пам’яті. Хоча на рівні 7–9 класів ці аспекти

розглядаються поверхово, важливо закласти основи розуміння — чому одна

програма може працювати швидше або бути простішою для читання.

Вдосконалення структури коду

Учні вчаться застосовувати принципи чистоти коду: зрозумілі назви змінних,

логічна структура, коментування складних ділянок програми. Такі навички

сприяють формуванню культури програмування — вміння писати код, який

легко зрозуміти і використати повторно.

Методичні прийоми

Для реалізації цього етапу доцільно використовувати:

 взаємоперевірку програм — учні обмінюються роботами та

аналізують їх сильні й слабкі сторони;

 роботу з "помилковими програмами" — спеціально підготовлені

приклади, у яких є логічні або структурні недоліки;

 порівняння двох способів розв’язання однієї задачі — обговорення,

який варіант більш ефективний чи зрозумілий;

 створення «міні-ревізій» коду — коротких вправ із покращення вже

написаних програм.

Приклади завдань

 Знайти й виправити помилки в коді, який неправильно обчислює

середнє значення.

 Оптимізувати програму для знаходження найбільшого числа серед

введених користувачем.

 Додати до існуючої програми можливість повторного виконання без

перезапуску.

 Зробити програму більш зручною для користувача, додавши

повідомлення про помилки або підказки.

Очікувані результати

43

Після проходження етапу учні повинні:

 уміти знаходити та виправляти помилки у власних і чужих

програмах;

 розуміти принципи оптимізації коду та оцінювати його

ефективність;

 удосконалювати програму, зберігаючи її логіку, але підвищуючи

якість виконання;

 усвідомлювати важливість тестування й налагодження як

невід’ємної частини процесу програмування.

Таким чином, етап аналізу та вдосконалення завершує базовий цикл

формування умінь програмування у 7–9 класах. Він сприяє переходу від

простого створення програм до свідомого контролю та рефлексії над

результатами власної діяльності, що є необхідним кроком на шляху до

формування компетентного, критично мислячого молодого програміста.

Етап 5. Творче застосування (розробка власних мініпроєктів і розв’язання

нестандартних задач)

П’ятий етап адаптованої таксономії програмування — творче застосування

— є завершальним і найвищим рівнем у формуванні вмінь програмування в учнів

7–9 класів. На цьому етапі школярі переходять від виконання завдань за зразком

чи інструкцією до самостійного створення власних програмних продуктів,

демонструючи глибоке розуміння принципів програмування, здатність

планувати роботу, прогнозувати результати та творчо підходити до вирішення

проблем.

Сутність етапу

Основна мета цього етапу — розвиток творчого й дослідницького

мислення. Учень не лише виконує задані алгоритми, а й самостійно:

 ставить перед собою задачу;

 планує її реалізацію;

 обирає мову та середовище програмування;

 реалізує власний проєкт від ідеї до готового продукту.

44

Таким чином, програмування перетворюється з навчального предмета на

інструмент самовираження [39] — спосіб створення чогось нового, цікавого й

корисного.

Основні напрями діяльності учнів

На цьому етапі учні можуть працювати над:

 мініпроектами — невеликими, але завершеними програмами

(наприклад, гра, тест, навчальний тренажер, інтерактивна історія,

калькулятор, генератор паролів, візуалізатор даних);

 розв’язанням нестандартних задач, які потребують творчого

мислення (наприклад, написання програми, що генерує візерунки

або малюнки за певними правилами);

 проєктами соціального спрямування, які мають практичне значення

для школи чи громади (наприклад, програма для підрахунку

середнього балу класу або планувальник розкладу).

Методичні підходи

Для організації цього етапу доцільно застосовувати:

 проєктну технологію навчання, де учень проходить усі етапи — від

задуму до презентації результату;

 індивідуальні або групові проєкти, що сприяють розвитку

комунікаційних навичок і командної роботи;

 гейміфіковані змагання (наприклад, створення найоригінальнішої

гри або найзручнішого застосунку);

 використання онлайн-платформ (Scratch, Replit, Code.org, p5.js), що

забезпечують миттєвий результат і візуальний зворотний зв’язок

[40].

На цьому етапі роль учителя змінюється: він перестає бути джерелом знань

і стає ментором, який консультує, підтримує, допомагає реалізувати задум, але

не нав’язує готових рішень.

45

Приклади завдань для етапу творчого застосування

 Створити інтерактивну гру у Scratch або JavaScript (“Вгадай число”,

“Лабіринт”, “Пінг-понг”).

 Розробити навчальну програму-тренажер із математики або логіки.

 Створити мінікалькулятор із вибором операцій і підрахунком

результатів.

 Розробити вебсторінку з інтерактивними елементами, написаними

на JavaScript.

 Створити програму для обліку результатів класу або домашніх

завдань.

Очікувані результати

Після проходження цього етапу учні повинні:

 уміти самостійно розробляти програмні проекти від ідеї до

реалізації;

 проявляти творчість у розв’язанні нестандартних задач;

 застосовувати отримані знання комплексно, комбінуючи різні

алгоритмічні структури;

 аналізувати та презентувати власну роботу, аргументуючи вибір

підходів і засобів.

Освітнє значення етапу

Етап творчого застосування має особливе значення, оскільки саме тут

відбувається формування стійкої мотивації до програмування. Учень бачить, що

може створити щось самостійно — і це приносить задоволення, розвиває

самооцінку, викликає інтерес до подальшого навчання.

Таким чином, цей етап завершує процес формування програмістських

умінь, забезпечуючи перехід від навчального до практично-творчого рівня

діяльності. Він не лише формує технічні навички, а й розвиває ключові

компетентності — креативність, самостійність, критичне мислення та здатність

до самонавчання, що відповідають сучасним вимогам освіти та ринку праці.

46

2.3. Практична реалізація методики у навчальному процесі

Добір змісту навчального матеріалу відповідно до етапів формування

умінь

Практична реалізація розробленої методики потребує ретельного добору

навчального матеріалу, який відповідав би кожному з п’яти етапів формування

умінь програмування. Вибір змісту навчання визначає, наскільки ефективно учні

засвоюватимуть як базові поняття, так і здатність до самостійного застосування

знань у творчих завданнях.

На етапі усвідомлення особлива увага приділяється простим, але

зрозумілим прикладам, які дозволяють учням візуалізувати абстрактні поняття

програмування. Це можуть бути демонстрації роботи алгоритмів у середовищах

Scratch або Code.org, де учень одразу бачить результат дій програми. Важливо,

щоб матеріал не перевантажував учнів складними конструкціями, а дозволяв

поступово ознайомлюватися з типами змінних, базовими операціями та

основними структурами керування.

На етапі застосування зміст навчального матеріалу включає вже більш

конкретні вправи, що потребують виконання простих алгоритмів і написання

невеликих програм за готовим зразком. Учні починають самостійно

застосовувати знання, які отримали на попередньому рівні, виконуючи завдання

з обчислення площі фігур, перевірки чисел на парність чи створення коротких

циклічних обчислень. Тут важливо добирати матеріал таким чином, щоб він

поступово підвищував складність завдань і дозволяв учням закріплювати

синтаксис і структури керування на практиці.

На етапі конструювання добір матеріалу спрямований на розвиток

здатності учнів поєднувати різні елементи мови програмування. Завдання

повинні спонукати до самостійного планування алгоритмів і створення програм

із кількома структурами, таких як цикли, умовні оператори, робота з масивами.

Матеріал на цьому етапі може включати опис проблеми у вигляді тексту або

блок-схеми, де учень самостійно визначає послідовність дій і реалізує її у

програмному коді.

47

На етапі аналізу і вдосконалення навчальний матеріал повинен

передбачати роботи з власним або чужим кодом, що містить помилки або

неоптимальні рішення. Це дозволяє учням навчитись відлагоджувати програми,

усувати логічні та синтаксичні помилки, удосконалювати структуру коду та

робити його більш зрозумілим. Добір матеріалу на цьому етапі передбачає

завдання з підвищеною аналітичною складовою, де учні не просто повторюють

відомі дії, а оцінюють роботу програми та вносять зміни для її покращення.

На заключному етапі творчого застосування матеріал повинен

стимулювати розвиток творчого мислення та самостійності. Це можуть бути

завдання, які передбачають розробку власних мініпроєктів, ігрових програм,

інтерактивних тренажерів або практичних інструментів для використання в

навчальному процесі. У цьому випадку зміст навчання повинен не лише надати

знання, але й створити умови для експериментування, комбінації різних

алгоритмічних структур та прояву індивідуальної творчості.

Таким чином, добір навчального матеріалу відповідно до етапів методики

забезпечує послідовний розвиток умінь програмування, поступове підвищення

складності завдань, формування алгоритмічного мислення, вміння аналізувати

та вдосконалювати код і, в кінцевому результаті, стимулює творчу активність

учнів у процесі навчання програмуванню.

Приклади навчальних завдань і проєктів для учнів 7–9 класів

Практична реалізація методики неможлива без конкретних завдань і

проєктів, які б відповідали рівню підготовки учнів та етапам формування умінь

програмування [12]. Такі завдання мають бути продуманими, щоб стимулювати

розвиток алгоритмічного мислення, навички самостійного написання програм та

творчого підходу до розв’язання проблем.

На початковому етапі навчання — усвідомлення та застосування —

доцільно пропонувати завдання репродуктивного характеру. Це можуть бути

вправи, в яких учень повинен зрозуміти роботу простих алгоритмів і відтворити

їх у програмному середовищі. Наприклад, створення програми, що обчислює

площу прямокутника або суми чисел у заданому діапазоні, реалізація циклічної

48

програми для виведення таблиці множення, або написання невеликого

калькулятора для простих арифметичних операцій. Такі завдання дозволяють

учням закріпити базові поняття, зрозуміти логіку структур керування і засвоїти

синтаксис мови програмування.

На етапі конструювання завдання ускладнюються і включають поєднання

декількох структур керування. Учні можуть самостійно розробляти програми, де

поєднуються цикли та умовні оператори, або використовуються масиви і прості

функції. Наприклад, розробка програми для обчислення середнього балу класу,

створення гри «Вгадай число», або програми для аналізу введених користувачем

даних із виведенням статистики. Завдання такого типу стимулюють учнів

планувати алгоритм, мислити структуровано та застосовувати набуті знання

комплексно.

На етапі аналізу і вдосконалення учні працюють із завданнями, які

передбачають пошук помилок у коді та його оптимізацію. Це можуть бути

програми з навмисно закладеними логічними помилками, завдання на

спрощення або покращення коду, а також вправи, що потребують додавання

нових функцій або зміни структури програми для підвищення ефективності.

Наприклад, учень може отримати програму для обчислення факторіалу, де

потрібно виправити помилки циклу, або розроблену колегами гру, яку необхідно

покращити, додавши підказки чи обмеження для користувача.

На заключному етапі — творче застосування — учні розробляють власні

мініпроєкти, де проявляють індивідуальність і креативність. Це можуть бути

інтерактивні ігри, навчальні тренажери, генератори випадкових чисел,

візуалізатори даних або вебпрограми з інтерактивними елементами. Наприклад,

учень може створити невелику гру у Scratch, розробити тест для перевірки знань

із математики, або створити вебсторінку з інтерактивними кнопками і

графічними елементами на JavaScript. Такі завдання дозволяють учням

застосувати знання комплексно, експериментувати з різними алгоритмічними

структурами та реалізувати власні ідеї.

49

Вибір завдань і проєктів за рівнями методики забезпечує послідовний

розвиток програмістських умінь, стимулює інтерес до навчання, формує

алгоритмічне мислення, а також розвиває самостійність і творчий підхід у

вирішенні задач різної складності.

Роль учителя в організації діяльності учнів і підтримці мотивації

Під час навчання програмуванню учитель виконує значно більше, ніж

просто пояснення нового матеріалу. Він виступає організатором навчальної

діяльності, наставником і мотиватором, який допомагає учням рухатися вперед

на кожному етапі засвоєння знань. Важливим завданням учителя є створення

такого навчального середовища, у якому школярі можуть ефективно вивчати

матеріал, пробувати власні ідеї, аналізувати результати та проявляти творчість.

На перших етапах — під час знайомства з новими поняттями та виконання

базових завдань — учитель забезпечує поступове й доступне пояснення

матеріалу. Він демонструє приклади роботи алгоритмів, показує основні

конструкції мови програмування, допомагає зрозуміти, як саме виконується

програма. Важливо, щоб учні не просто повторювали дії за вчителем, а вчилися

самостійно робити висновки, перевіряти себе та порівнювати різні варіанти

розв’язання.

Коли учні переходять до створення власних алгоритмів і аналізу

результатів, роль учителя змінюється. Він стає консультантом, який скеровує

роботу над практичними завданнями та мініпроектами. Учитель допомагає

планувати структуру програми, підказує, як можна знайти й виправити помилки,

на що звернути увагу під час оптимізації. Водночас він не пропонує готових

відповідей — завдання учнів полягає в тому, щоб самим аналізувати,

експериментувати й удосконалювати власний код. Саме на цьому етапі активно

формується критичне мислення, адже школярі вчаться оцінювати і власні

рішення, і роботи однокласників.

На етапі творчого застосування знань учитель стає ментором, який

підтримує ідеї учнів та допомагає їм реалізувати власні проєкти. Це можуть бути

ігри, вебсторінки, анімації чи прості боти — усе, що дозволяє учням застосувати

50

знання в реальних умовах. Учитель також координує групову роботу: допомагає

розподілити ролі, стежить за командною взаємодією, підтримує учнів у складні

моменти та стимулює їх презентувати свої розробки.

Мотиваційна функція учителя полягає у створенні атмосфери, де помилки

сприймаються нормально, як природний етап навчання. Похвала за успіхи,

навіть маленькі, підсилює бажання працювати далі. Демонстрація практичної

користі програмування, використання ігрових елементів, проєктної діяльності та

сучасних технологій формує стійкий інтерес учнів до предмета.

Отже, учитель відіграє ключову роль у формуванні навичок

програмування. Він не лише передає знання, а й створює умови для розвитку

алгоритмічного мислення, творчості, самостійності та мотивації учнів. Саме

завдяки цьому стає можливим поступовий перехід від простих практичних вправ

до самостійної розробки власних програмних проєктів.

2.4. Оцінювання результатів навчання програмування

Критерії оцінювання сформованості умінь програмування

Оцінювання результатів навчання програмування у 7–9 класах є важливим

елементом реалізації розробленої методики, оскільки дозволяє не лише

визначити рівень засвоєння матеріалу, а й стимулювати подальший розвиток

алгоритмічного мислення та творчості учнів [11]. Для цього доцільно

використовувати комплексну систему критеріїв, яка відображає всі етапи

формування умінь — від усвідомлення базових понять до творчого застосування

знань.

Першим критерієм є усвідомлення базових понять і структур

програмування. Оцінюється здатність учня правильно ідентифікувати типи

змінних, оператори, цикли та умовні конструкції, розуміти синтаксис мови та

логіку роботи алгоритмів. На цьому рівні важливо, щоб учень міг пояснити

принцип роботи програми, описати, як і чому вона виконує ті чи інші дії, а також

правильно використовувати базові структури у простих завданнях.

Другий критерій стосується застосування знань на практиці. Тут

оцінюється вміння учня писати прості програми за зразком або з частковою

51

допомогою вчителя. Важливим показником є правильність виконання завдань,

використання структур керування відповідно до поставленої задачі, а також

здатність учня відтворювати алгоритми, пояснювати власні дії та досягати

правильного результату.

Третім критерієм є самостійне конструювання програм. На цьому рівні

оцінюються вміння учня поєднувати різні алгоритмічні конструкції, планувати

логіку програми, використовувати допоміжні змінні або прості структури даних.

Важливо, щоб учень міг самостійно розробити невелику програму або алгоритм

для розв’язання поставленої задачі, перевіряти його працездатність та вносити

необхідні корективи.

Четвертий критерій стосується аналізу та вдосконалення коду. Оцінюється

здатність учня знаходити помилки у власних або чужих програмах, розуміти

причини їх виникнення та виправляти їх, оптимізувати структуру коду та

підвищувати його ефективність. Важливим показником є уміння учня

обґрунтувати внесені зміни і оцінити покращення результату після оптимізації.

Останній критерій — творче застосування знань. На цьому рівні

оцінюються здатність учня самостійно ставити перед собою завдання, планувати

та реалізовувати власні мініпроєкти, поєднувати різні елементи програмування,

експериментувати з кодом та створювати функціональні ігрові, навчальні або

практичні програми. Оцінюється також презентація власного проекту,

аргументованість обраних рішень та рівень творчого підходу.

Таким чином, критерії оцінювання сформованості умінь програмування

охоплюють усі етапи адаптованої таксономії, дозволяючи вчителю об’єктивно

оцінювати як базові навички, так і творчі здатності учнів, а також своєчасно

виявляти труднощі і надавати необхідну підтримку для їх подолання.

Діагностичні інструменти (самооцінка, тести, проєктні завдання)

Щоб якісно оцінити сформованість умінь з програмування у учнів 7–9

класів, варто застосовувати різні діагностичні інструменти. Поєднання кількох

методів дає змогу отримати цілісне уявлення не лише про рівень теоретичних

знань, а й про практичні вміння, здатність учнів самостійно працювати та

52

проявляти творчий підхід. Такий підхід допомагає вчителю краще розуміти

потреби класу, а учням — відповідальніше ставитися до власного навчання.

Одним із важливих інструментів є самооцінка [31]. Вона допомагає учням

осмислено підходити до виконання завдань і відстежувати власний прогрес.

Самооцінка може бути у вигляді коротких опитувань чи невеликих рефлексій

після уроку. Учень може оцінити, наскільки йому було зрозуміло завдання, чи

вдалося правильно скласти алгоритм, які саме конструкції викликали складнощі,

чи зміг він самостійно знайти помилки. Така практика розвиває вміння

аналізувати власну роботу та усвідомлювати свої сильні й слабкі сторони.

Ще один ефективний інструмент — тестування. Тести дозволяють швидко

й об’єктивно перевірити базовий рівень засвоєння матеріалу. Вони можуть

містити завдання на розпізнавання синтаксичних помилок, аналіз логіки

алгоритмів, побудову блок-схем, а також невеликі практичні вправи. Завдяки

тестуванню вчитель може виявити теми, які потребують повторного пояснення,

а учні — зрозуміти, які саме аспекти потребують доопрацювання.

Найбільш повно рівень підготовки учнів демонструють проєктні завдання.

Вони дозволяють оцінити не тільки технічні вміння, але й творчість, уміння

планувати власну роботу та доводити справу до кінця. Це можуть бути

мініпрограми, ігри, прості чат-боти чи інші корисні інструменти. Під час

виконання таких проєктів учні показують, чи можуть вони самостійно скласти

алгоритм, об’єднати різні структури коду, провести налагодження та

оптимізацію. Оцінювання таких робіт зазвичай включає точність виконання,

продуманість рішень і якість реалізації.

Комплексне використання самооцінки, тестів і проєктних завдань дає

змогу створити багаторівневу систему діагностики. Учні отримують зворотний

зв’язок на різних етапах навчання, а вчитель має можливість бачити динаміку

розвитку навичок, вчасно коригувати навчальний процес і підтримувати

мотивацію школярів до подальшого вдосконалення своїх умінь у програмуванні.

53

Відстеження динаміки розвитку учнів на різних етапах

Відстеження динаміки розвитку учнів є невід’ємною складовою

оцінювання ефективності методики формування умінь програмування. Воно

дозволяє вчителю не лише визначити рівень знань і навичок на певний момент,

а й простежити прогрес учня протягом усього навчального процесу, оцінити

ефективність використаних підходів і коригувати завдання відповідно до потреб

класу.

На початковому етапі — усвідомлення — динаміка розвитку

відображається у здатності учнів правильно ідентифікувати базові поняття,

розуміти синтаксис мови програмування та логіку виконання простих

алгоритмів. Вчитель може фіксувати, наскільки швидко учні засвоюють новий

матеріал, чи виникають труднощі при виконанні базових завдань, і чи

потребують вони додаткових пояснень або демонстрацій.

На етапах застосування та конструювання динаміка проявляється у

збільшенні складності завдань, які учні виконують самостійно. Вчитель

відстежує здатність учнів поєднувати різні структури, правильно застосовувати

цикли та умовні оператори, планувати послідовність дій у програмі. Поступовий

перехід від виконання завдань за зразком до самостійного створення алгоритмів

свідчить про зростання рівня компетентності та формування алгоритмічного

мислення.

На етапах аналізу і вдосконалення прогрес учнів відображається у вмінні

знаходити помилки у власному коді та коді однокласників, удосконалювати

структуру програм, робити оптимізацію алгоритмів і обґрунтовувати внесені

зміни. Тут учитель оцінює не лише результат, а й процес мислення учня,

здатність до самоконтролю та критичної оцінки виконаної роботи.

На заключному етапі творчого застосування динаміка розвитку оцінюється

за здатністю учнів створювати власні мініпроєкти та вирішувати нестандартні

завдання. Важливим є спостереження за тим, наскільки самостійно учні

планують, реалізують і представляють проєкти, як експериментують з

алгоритмами, поєднують різні структури і демонструють творчий підхід.

54

Відстеження динаміки розвитку учнів дозволяє сформувати індивідуальні

профілі навчання, виявити сильні та слабкі сторони кожного учня і забезпечити

диференційовану підтримку. Такий підхід допомагає ефективно організовувати

навчальний процес, стимулює розвиток самостійності, творчості та мотивації до

вивчення програмування, а також дає можливість оцінити реальний вплив

методики на формування програмістських умінь у середній школі.

55

ВИСНОВКИ ДО ДРУГОГО РОЗДІЛУ

Другий розділ кваліфікаційної роботи присвячено розробці й опису

методики формування умінь програмування в учнів 7–9 класів. Було

запропоновано адаптовану таксономію програмування, яка базується на ідеях

класичної таксономії Блума, але модифікована для спрощення засвоєння

матеріалу та підвищення ефективності навчання. У межах цієї методики

виділено п’ять послідовних етапів: усвідомлення, застосування, конструювання,

аналіз і вдосконалення, а також творче застосування знань. Кожен етап формує

відповідні компетентності, починаючи від розуміння базових понять і

закінчуючи самостійною розробкою проєктів та вирішенням нестандартних

задач.

Розроблена методика передбачає поступовий, системний розвиток

програмістських умінь, де матеріал підбирається відповідно до рівня підготовки

учнів і етапу навчання. Добір змісту, навчальних завдань і проєктів забезпечує

поступове підвищення складності, поєднання теоретичних знань із практичними

навичками, розвиток логічного та алгоритмічного мислення, а також

формування творчої самостійності.

Особлива увага приділена ролі учителя, який виступає наставником,

координатором і мотиватором. Учитель організовує навчальну діяльність,

підтримує учнів, стимулює їхню зацікавленість, створює умови для

експериментування та розвитку творчих здібностей. Застосування комплексної

системи оцінювання, що включає критерії, тести, самооцінку та проєктні

завдання, дозволяє не лише визначити рівень засвоєння знань, а й відстежувати

динаміку розвитку учнів на різних етапах, виявляти проблеми та коригувати

навчальний процес.

Таким чином, другий розділ доводить ефективність запропонованої

методики у систематичному формуванні програмістських умінь, підвищенні

мотивації учнів і розвитку їхньої творчої активності, що створює міцну основу

для успішного засвоєння програмування.

56

РОЗДІЛ 3. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ

ЕФЕКТИВНОСТІ РОЗРОБЛЕНОЇ МЕТОДИКИ

3.1. Організація педагогічного експерименту

Мета та завдання експерименту

Метою педагогічного експерименту було перевірити ефективність

розробленої методики навчання програмування учнів 8 класу, яка базується на

поетапному формуванні програмістських умінь — від відтворення зразків до

творчого застосування знань у власних проєктах.

Основна ідея експерименту полягала в тому, щоб порівняти результати

навчання двох підгруп восьмикласників: контрольної та експериментальної.

Учні контрольної підгрупи навчалися за традиційною програмою, де головна

увага приділялася поясненню теоретичного матеріалу та виконанню типових

вправ. Експериментальна підгрупа, натомість, працювала за розробленою

методикою, яка передбачала поступове формування вмінь через діяльнісний

підхід, акцент на практичних завданнях, самостійне створення програм і

мініпроєктів, а також рефлексію власних результатів.

Завдання експерименту полягали у визначенні:

 рівня сформованості базових умінь програмування (створення

алгоритмів, написання програм, аналіз і відлагодження коду);

 динаміки зростання пізнавальної активності та мотивації учнів до

вивчення програмування;

 впливу застосування поетапної методики на якість виконання

навчальних завдань різного рівня складності;

 ефективності запропонованих форм і методів навчання у створенні

умов для розвитку творчого мислення школярів.

Таким чином, мета експерименту зводилася не лише до перевірки

результативності нової методики у порівнянні з традиційним підходом, а й до

виявлення тих аспектів навчання, які найбільше сприяють засвоєнню учнями

основ програмування та формуванню стійкої зацікавленості в цій галузі.

57

Контингент учасників: опис класу та підгруп

У педагогічному експерименті брали участь учні 8 класу закладу загальної

середньої освіти. Загальна кількість учнів становила 24 особи. Клас було

поділено на дві рівноцінні підгрупи — контрольну та експериментальну — по 12

учнів у кожній.

Розподіл учнів відбувався з урахуванням рівня їхніх попередніх

навчальних досягнень, щоб групи були приблизно однаковими за підготовкою.

Це дало змогу забезпечити об’єктивність результатів дослідження. Також було

враховано індивідуальні особливості учнів: темп роботи, рівень самостійності,

зацікавленість у вивченні інформатики.

Контрольна підгрупа навчалася за чинною програмою з інформатики для 8

класу, без використання спеціальних методичних прийомів, описаних у другому

розділі. Уроки проводилися в традиційній формі: пояснення нового матеріалу,

демонстрація прикладів учителем, виконання вправ за підручником та

закріплення знань через домашні завдання.

Експериментальна підгрупа, навпаки, навчалася за розробленою

методикою поетапного формування вмінь програмування. Заняття передбачали

активне залучення учнів до практичної діяльності, самостійне складання

алгоритмів, створення коротких програм, обговорення результатів, пошук і

виправлення помилок у коді, а також розробку невеликих творчих мініпроектів.

Навчання проводилося в комп’ютерному класі, обладнаному сучасними

ПК із доступом до мережі Інтернет. Програмне забезпечення включало

текстовий редактор коду (Visual Studio Code) та середовище виконання

JavaScript-програм. Обидві підгрупи працювали в однакових умовах, що

забезпечувало чистоту експерименту.

Таким чином, контингент учасників складався з учнів середнього

шкільного віку, які мали базові знання з інформатики та вперше системно

знайомилися з основами програмування. Саме це робило їх оптимальною

вибіркою для дослідження ефективності нової методики навчання.

58

Етапи проведення експерименту

Педагогічний експеримент відбувався у три основні етапи:

констатувальний, формувальний і підсумковий (контрольний). Кожен з них мав

свою мету, завдання та зміст роботи.

Перший етап — констатувальний — був спрямований на визначення

початкового рівня сформованості вмінь програмування в учнів 8 класу. На цьому

етапі проводилося вхідне діагностування: учні виконували тестові та практичні

завдання, спрямовані на перевірку розуміння базових понять (змінна, оператор,

умова, цикл) та вміння складати найпростіші алгоритми. Результати цього етапу

дозволили встановити, що більшість учнів мають лише поверхневі уявлення про

програмування та недостатньо розуміють логіку побудови алгоритмів. Дані

діагностики стали основою для подальшого порівняльного аналізу.

Другий етап — формувальний — тривав найбільше часу й полягав у

впровадженні розробленої методики формування вмінь програмування.

Протягом кількох місяців експериментальна підгрупа навчалася за

удосконаленою моделлю, яка передбачала поетапне опанування матеріалу: від

розуміння основ синтаксису до створення власних мініпроєктів. На кожному

етапі велика увага приділялася практичним вправам, роботі в парах, аналізу

помилок і самооцінці результатів. У контрольній підгрупі, водночас, навчання

відбувалося традиційним способом — з акцентом на пояснення та відтворення

зразків.

Третій етап — підсумковий (контрольний) — мав на меті перевірити

ефективність упровадженої методики. Учні обох підгруп виконували підсумкове

тестування й практичне завдання, яке вимагало створення невеликої програми з

використанням умов, циклів і функцій. Крім того, було проведено анкетування

для визначення рівня навчальної мотивації та самооцінки учнів щодо власних

успіхів у програмуванні.

У процесі експерименту систематично фіксувалися спостереження за

навчальною діяльністю школярів: рівень активності, зацікавленість,

59

самостійність у розв’язанні завдань. Усе це дозволило комплексно оцінити не

лише навчальні досягнення, а й розвиток пізнавальної мотивації.

Загалом, проведення трьох етапів експерименту забезпечило повний цикл

дослідження — від виявлення проблеми до практичної перевірки ефективності

запропонованої методики, що дало змогу зробити обґрунтовані висновки про її

результативність.

3.2. Методи та інструменти дослідження

Спостереження за навчальною діяльністю учнів

Спостереження було одним із провідних методів педагогічного

експерименту, оскільки воно дозволяло безпосередньо фіксувати поведінку,

активність і зацікавленість учнів у процесі вивчення програмування. Цей метод

застосовувався протягом усього формувального етапу експерименту, і його

результати стали важливим доповненням до кількісних показників тестування.

Спостереження здійснювалося систематично під час уроків інформатики,

коли учні виконували практичні завдання або працювали над невеликими

проєктами. Основна увага приділялася тому, як саме школярі підходять до

розв’язання задач, чи намагаються вони самостійно знаходити помилки в коді,

як реагують на труднощі, і наскільки активно залучаються до обговорення

результатів.

У контрольній підгрупі помітно переважала пасивна поведінка — учні

чекали пояснення вчителя, рідко проявляли ініціативу та не завжди прагнули

зрозуміти принципи роботи програми. Натомість у експериментальній підгрупі

спостерігалася зовсім інша динаміка: учні активно ставили запитання, шукали

різні способи реалізації алгоритмів, охоче ділилися відкриттями з

однокласниками.

Особливо помітним було зростання самостійності: на початку

експерименту більшість учнів потребували постійної підтримки вчителя, тоді як

наприкінці значна частина могла самостійно планувати структуру програми,

відлагоджувати код і навіть допомагати іншим. Учні проявляли зацікавленість у

60

створенні власних невеликих ігор або симуляцій, що свідчило про підвищення

рівня внутрішньої мотивації до навчання програмування.

Для систематизації результатів спостереження було розроблено умовну

шкалу активності, де враховувалися такі показники, як участь у дискусії,

самостійність у роботі, виявлення ініціативи та здатність до взаємодопомоги.

Отримані спостереження показали чітку тенденцію до зростання інтересу й

навчальної активності саме в експериментальній підгрупі.

Таким чином, спостереження підтвердило, що впроваджена методика

сприяє не лише формуванню технічних навичок програмування, а й розвитку

пізнавальної активності, самостійності та впевненості учнів у власних силах.

Тестові завдання для оцінки знань та умінь

Для об’єктивного вимірювання ефективності розробленої методики в

експерименті були використані спеціально підготовлені тестові завдання,

спрямовані на перевірку рівня знань і сформованості практичних умінь

програмування. Вони охоплювали як теоретичні аспекти, так і практичні

навички, що відповідають програмі з інформатики для 8 класу.

Тестування проводилося двічі: на початку та наприкінці формувального

етапу експерименту. Початкове тестування дозволило визначити вихідний

рівень підготовки учнів обох підгруп, а підсумкове — простежити динаміку змін

і оцінити ефективність застосованої методики.

Зміст тестів складався з трьох частин:

Перша частина — короткі теоретичні запитання з вибором однієї

правильної відповіді. Вони стосувалися базових понять: змінні, оператори,

цикли, умовні конструкції, типи даних. Наприклад: «Який оператор

використовується для перевірки умови в JavaScript?» або «Яка з наведених

конструкцій утворює цикл?». Ця частина дозволяла перевірити розуміння

базових понять (етап «Усвідомлення» згідно з методикою).

Друга частина містила завдання на застосування знань у практичних

ситуаціях. Учням пропонувалося скласти короткий алгоритм або фрагмент коду

для розв’язання простої задачі, наприклад: «Напишіть програму, що обчислює

61

середнє арифметичне трьох чисел» або «Складіть програму, яка визначає, чи є

число парним».

Третя частина включала творчі та аналітичні завдання, де потрібно було

знайти помилку в поданому коді, оптимізувати алгоритм або змінити його під

нову умову. Наприклад: «Знайдіть і виправте помилки в наведеному коді

програми, що виводить числа від 1 до 10». Ці завдання дозволяли оцінити

сформованість умінь аналізу, відлагодження й удосконалення програм.

Оцінювання проводилося за чотирибальною шкалою для кожного рівня:

 1 бал — знання фрагментарні, суттєві помилки в розумінні понять;

 2 бали — знання поверхові, але основні принципи розуміються;

 3 бали — знання достатні, учень правильно застосовує структури й

алгоритми;

 4 бали — знання глибокі, учень демонструє творче мислення та

самостійність.

Результати тестування показали, що на початку експерименту рівень знань

обох підгруп був приблизно однаковим. Однак після завершення навчання

середній бал учнів експериментальної підгрупи зріс значно більше — переважна

більшість продемонструвала сформовані вміння застосовувати знання на

практиці та самостійно створювати невеликі програми.

Таким чином, тестові завдання стали надійним інструментом оцінювання

динаміки навчальних досягнень та підтвердили ефективність запропонованої

методики у розвитку вмінь програмування в учнів 8 класу.

Проєктні завдання та практичні роботи

Окрім тестування та спостереження, важливим компонентом дослідження

стали проєктні завдання та практичні роботи, які дозволили оцінити не лише

рівень засвоєння теоретичних знань, а й здатність учнів застосовувати їх у

реальних навчальних ситуаціях. Цей вид діяльності був особливо цінним для

виявлення рівня сформованості практичних умінь програмування, логічного

мислення та креативності.

62

У ході експерименту кожна підгрупа виконувала набір практичних робіт,

проте їх зміст і форма подання відрізнялися. Контрольна підгрупа працювала за

традиційною схемою: отримувала готові інструкції та зразки коду, які потрібно

було відтворити. Такі завдання допомагали закріпити матеріал, проте

обмежували самостійність учнів.

Експериментальна підгрупа, навпаки, працювала за методикою, описаною

у другому розділі — з опорою на етапи адаптованої таксономії програмування.

Учні поступово переходили від простих практичних дій до самостійного

створення невеликих програмних продуктів. Спочатку вони тренувалися у

написанні окремих алгоритмів, а далі виконували мініпроєкти, які вимагали

поєднання кількох структур і функцій.

Серед проєктних завдань, які виконували учні експериментальної групи,

були такі:

 створення програми для обчислення оцінок середнього балу класу;

 написання гри «Вгадай число» з елементами циклів і умовних

операторів;

 розробка простої анімації або інтерактивної історії у середовищі

Scratch;

 створення вебсторінки з інтерактивними елементами на JavaScript.

Такі завдання мали практичну спрямованість і давали змогу кожному

учневі відчути себе справжнім розробником. Вони вимагали не лише знання

синтаксису, а й уміння планувати власну роботу, аналізувати помилки,

експериментувати з різними варіантами розв’язку.

Під час виконання проєктів особливу увагу приділялося співпраці учнів.

Частину завдань вони виконували у парах або малих групах, що сприяло

розвитку навичок командної роботи та взаємонавчання. Учні активно

обговорювали рішення, ділилися знахідками, порівнювали підходи до

оптимізації коду.

Результати аналізу виконаних робіт показали, що учні експериментальної

підгрупи демонстрували вищий рівень самостійності, логічного мислення й

63

творчого підходу. Більшість з них не лише коректно реалізовували програму, а й

намагалися вдосконалити її, додаючи нові функції або покращуючи інтерфейс.

Отже, впровадження проєктних завдань і практичних робіт стало

важливим елементом формувального етапу експерименту. Вони підтвердили, що

розроблена методика сприяє розвитку практичної компетентності, мотивації до

навчання і дає змогу кожному учневі проявити себе в процесі програмування не

як виконавця, а як творця.

Анкетування та самооцінка учнів

Для отримання більш повної картини результативності експерименту

важливо було не лише перевірити знання та вміння учнів, а й зрозуміти їхнє

власне ставлення до процесу навчання програмування. З цією метою було

проведено анкетування та самооцінку, які допомогли з’ясувати рівень мотивації,

інтересу, труднощі, з якими стикалися школярі, та їхнє бачення власного

прогресу.

Анкетування проводилося двічі — на початку і в кінці експерименту. На

початковому етапі воно мало на меті визначити вихідні установки учнів:

наскільки їм цікаво програмування, чи вважають вони його складним предметом,

чи бачать практичне застосування отриманих знань. Наприкінці експерименту ті

самі запитання повторювалися, а також додавалися нові — спрямовані на оцінку

ефективності використаної методики.

Анкета містила як закриті, так і відкриті запитання. Наприклад:

 «Чи подобається тобі створювати власні програми?»

 «Наскільки складним для тебе є розуміння коду?»

 «Які завдання тобі цікавіші — ті, що мають чіткі інструкції, чи ті, де

потрібно вигадати власне рішення?»

 «Що, на твою думку, допомагає краще зрозуміти матеріал?»

Також використовувалася шкала самооцінки (від 1 до 5), де учні

оцінювали:

 свій рівень розуміння основ програмування;

 здатність самостійно писати програми;

64

 уміння знаходити й виправляти помилки;

 власну мотивацію до подальшого вивчення програмування.

Аналіз результатів показав, що на початку експерименту більшість учнів

(приблизно 65%) сприймали програмування як складний і навіть «трохи нудний»

предмет, що вимагає багато зусиль і терпіння. Після впровадження нової

методики ситуація змінилася кардинально. У експериментальній підгрупі понад

80% учнів відзначили, що програмування стало для них більш цікавим, а процес

навчання — зрозумілим і захопливим. Вони почали сприймати створення

програм як творчий процес, у якому можна проявити власну фантазію.

Учні також зазначали, що завдяки поетапному підходу, коли спочатку

розглядалися базові поняття, потім відбувалося застосування й конструювання,

вони відчули впевненість у своїх силах. Особливо позитивно учні відгукувалися

про гейміфіковані завдання та мініпроєкти, які дозволяли закріпити знання у

більш захопливій формі.

Порівняння результатів самооцінки показало, що рівень упевненості у

власних знаннях і навичках зріс у середньому на 1,3 бали у експериментальній

підгрупі, тоді як у контрольній — лише на 0,4. Це свідчить про позитивний вплив

методики не лише на навчальні результати, а й на емоційне сприйняття предмета.

Отже, анкетування та самооцінка підтвердили, що розроблена методика

сприяє формуванню не лише знань і вмінь, а й внутрішньої мотивації, інтересу

до предмета та віри у власні можливості. Учні почали сприймати програмування

не як складне завдання, а як захопливу діяльність, у якій можна досягти успіху

через власні зусилля.

3.3. Проведення експерименту

Діагностика початкового рівня умінь програмування

На констатувальному етапі педагогічного експерименту було проведено

діагностику початкового рівня сформованості в учнів умінь програмування.

Метою цього етапу було з’ясувати, наскільки учні 7–9 класів володіють

базовими знаннями та навичками, необхідними для подальшого вивчення мов

65

програмування, а також виявити типові труднощі, які виникають під час

засвоєння програмних понять.

Для проведення діагностики було розроблено тестові та практичні

завдання, що охоплювали такі напрями:

 розуміння базових понять інформатики, пов’язаних із алгоритмами

та програмами;

 уміння складати прості алгоритми у словесній або графічній формі;

 знання основних конструкцій мови програмування

(введення/виведення даних, умовні оператори, цикли);

 уміння знаходити помилки у фрагментах програмного коду;

 здатність застосовувати логічне мислення для розв’язання

елементарних задач.

Дослідження проводилося серед учнів 8-х класів, які вивчали тему

«Алгоритми та програми» з використанням мови програмування JavaScript. Для

об’єктивної оцінки рівня підготовки було визначено чотири рівні сформованості

умінь:

 високий рівень — учень самостійно складає правильні програми,

розуміє логіку їх виконання, може вдосконалювати код.

 достатній рівень — виконує завдання з незначними помилками, вміє

користуватися основними конструкціями мови.

 середній рівень — розуміє основні поняття, але потребує допомоги

під час написання коду.

 початковий рівень — має фрагментарні знання, не розуміє логіку

роботи програми.

Для оцінювання результатів було використано тест із 10 запитань

теоретичного характеру та два практичні завдання:

Скласти алгоритм обчислення суми трьох чисел і реалізувати його мовою

JavaScript.

Скласти програму, яка виводить усі парні числа в діапазоні від 1 до 20.

66

Результати діагностики показали, що більшість учнів перебувають на

середньому рівні сформованості умінь програмування. Це свідчить про наявність

базових знань, але недостатню здатність до самостійного створення програм.

Найбільші труднощі викликали завдання, пов’язані з умовними операторами та

циклами.

Таким чином, результати констатувального етапу підтвердили доцільність

розробки та впровадження методичних рекомендацій, спрямованих на

підвищення рівня сформованості умінь програмування шляхом використання

сучасних освітніх технологій, інтерактивних середовищ і практико-орієнтованих

завдань.

Впровадження методики формування умінь програмування

На формувальному етапі педагогічного експерименту було впроваджено

розроблену методику формування умінь програмування в учнів 7–9 класів

закладу загальної середньої освіти. Основна мета цього етапу полягала у

перевірці ефективності створених педагогічних умов, добору змісту, форм,

методів і засобів навчання, спрямованих на розвиток алгоритмічного мислення

та практичних навичок програмування.

Методика базувалася на таких провідних принципах навчання:

 науковості та доступності — матеріал подавався у логічній

послідовності, з урахуванням вікових особливостей учнів;

 наочності та практичної спрямованості — кожне теоретичне

положення супроводжувалося демонстраціями та виконанням

практичних завдань;

 поступового ускладнення навчального матеріалу — від блок-схем і

візуальних середовищ до роботи з реальним кодом;

 інтерактивності та самостійності — учні виконували завдання в

навчальних онлайн-середовищах, аналізували результати,

працювали в парах і групах;

 індивідуалізації навчання — передбачалося використання

диференційованих завдань відповідно до рівня підготовки учнів.

67

У процесі впровадження методики було передбачено три етапи навчальної

діяльності:

Мотиваційно-ознайомчий етап.

Учні знайомилися з поняттями алгоритму, виконавця, команди, мови

програмування. Здійснювалася демонстрація прикладів виконання простих

програм у середовищі JavaScript, зокрема через онлайн-платформи (наприклад,

repl.it, Codewars, Visual Studio Code у шкільному кабінеті). Використовувалися

ігрові елементи (квести, вікторини, задачі з історії програмування).

Формувально-практичний етап.

На цьому етапі відпрацьовувалися основні конструкції мови

програмування:

 оператори введення та виведення даних;

 арифметичні й логічні операції;

 розгалуження та цикли;

Робота з масивами та табличними величинами.

Для закріплення знань використовувалися практичні роботи, міні-проекти

та інтерактивні вправи. Учні створювали програми на реальні життєві теми

(наприклад, обчислення середнього бала, перетворення одиниць вимірювання,

симуляція гри “Вгадай число”).

Контрольно-рефлексивний етап.

На завершальному етапі учні виконували творчі проєкти [33], спрямовані

на перевірку сформованості вмінь програмування. Вони самостійно добирали

тему, розробляли алгоритм, писали програму та презентували результати роботи.

Рефлексія забезпечувалася шляхом самооцінки, взаємооцінювання та аналізу

типових помилок.

Для впровадження методики використовувалися різні засоби навчання.

Насамперед це були персональні комп’ютери та інтерактивна дошка, які

забезпечували комфортну роботу учнів на уроках. Для написання та запуску

програм застосовувалися кілька середовищ програмування, зокрема Visual

Studio Code, Code.org, p5.js та Scratch. Крім того, учні працювали з навчальними

68

симуляторами, онлайн-платформами та різними дидактичними матеріалами —

збірниками завдань, інструкційними картками та готовими шаблонами коду.

Під час експерименту особливий акцент робився на формуванні ключових

компетентностей.

 інформаційно-цифрова компетентність розвивалася завдяки

постійній роботі з програмними інструментами;

 комунікативна компетентність формувалася під час виконання

спільних завдань у парах або групах;

 інноваційна компетентність зміцнювалася через створення власних

проєктів і програмних продуктів;

 самоосвітня компетентність розвивалася тоді, коли учні зверталися

до онлайн-ресурсів для самостійного опрацювання матеріалу.

У цілому запропонована методика сприяла зростанню інтересу учнів до

програмування, допомагала формувати стійкі практичні навички та позитивно

вплинула на розвиток логічного й алгоритмічного мислення школярів.

Моніторинг та підтримка навчальної діяльності учнів

Протягом усього формувального етапу педагогічного експерименту

важливе місце займав постійний моніторинг навчальної діяльності учнів, що

дозволяв оперативно відстежувати рівень засвоєння матеріалу, своєчасно

виявляти труднощі та надавати індивідуальну допомогу. Моніторинг

здійснювався систематично, як у процесі виконання практичних робіт, так і під

час проміжного контролю знань.

Основними формами спостереження були аналіз активності учнів на уроці,

виконання ними програмних завдань у навчальному середовищі та участь у

колективних обговореннях. У процесі моніторингу використовувалися також

елементи формувального оцінювання: короткі усні коментарі, підказки,

рекомендації щодо вдосконалення коду чи алгоритму, спільний розбір типових

помилок.

Для фіксації результатів навчальної діяльності вчитель вів індивідуальні

карти спостереження, де зазначав рівень сформованості вмінь за основними

69

критеріями: уміння аналізувати задачу, створювати алгоритм, реалізовувати

його мовою програмування, налагоджувати та тестувати програму. Це дозволяло

простежити динаміку успішності кожного учня та вчасно виявляти потребу у

додаткових поясненнях чи консультаціях.

Особливу увагу приділяли емоційному стану учнів під час виконання

завдань. У контрольній групі часто спостерігалася втома та зниження інтересу

при переході до складніших тем. Натомість у експериментальній групі, де

застосовувалася розроблена методика, учні виявляли вищий рівень

зацікавленості завдяки використанню інтерактивних платформ, проєктної

діяльності та можливості творчого самовираження.

Важливою складовою підтримки навчальної діяльності було індивідуальне

консультування. Учитель проводив короткі мікроконсультації під час

практичних занять, допомагаючи учням знаходити логічні помилки у коді або

вибудовувати правильну послідовність дій. Крім того, учням надавалися

додаткові завдання з поступовим ускладненням, щоб стимулювати розвиток

самостійності.

Для підвищення зворотного зв’язку між учителем і учнями

використовувалися цифрові інструменти: Google Classroom для обміну

матеріалами, форми для самоперевірки та електронні журнали результатів. Це

дозволяло учням бачити власний прогрес і розуміти, над якими аспектами

потрібно попрацювати.

Таким чином, систематичний моніторинг та педагогічна підтримка

забезпечили високу результативність процесу навчання. Учні експериментальної

групи демонстрували не лише кращі результати у виконанні практичних завдань,

але й більш усвідомлений підхід до програмування як способу мислення та

розв’язання реальних проблем.

3.4. Аналіз результатів експерименту

Порівняння початкового та кінцевого рівня умінь

Після завершення формувального етапу експерименту було проведено

порівняльний аналіз рівнів сформованості вмінь програмування у контрольній та

70

експериментальній підгрупах. Для цього використовували ті самі тестові та

практичні завдання, що й на початку дослідження, що дозволило об’єктивно

оцінити динаміку навчальних результатів.

На початковому етапі (до впровадження методики) рівень знань та

практичних навичок обох підгруп був майже однаковим. Більшість учнів

демонстрували початковий або середній рівень сформованості вмінь: вони

розуміли основи синтаксису мови програмування, але відчували труднощі при

створенні власних алгоритмів і особливо під час налагодження коду.

Після завершення серії занять за розробленою методикою результати

експериментальної підгрупи значно покращилися. Учні показали вищу

самостійність у розв’язанні завдань, краще орієнтувалися у використанні

структур керування, коректно застосовували цикли, умови та змінні. Крім того,

спостерігалася виразна тенденція до зростання інтересу до програмування та

впевненості у власних силах.

Для зручності аналізу результати були згруповані за чотирма рівнями:

 початковий — учень виконує завдання лише за зразком, не розуміє

логіки програми;

 середній — частково самостійно створює код, але допускає

синтаксичні або логічні помилки;

 достатній — упевнено володіє базовими конструкціями, здатен

налагоджувати програми;

 високий — самостійно проєктує та реалізує власні рішення,

оптимізує код.

На початку експерименту розподіл рівнів був приблизно однаковим у двох

групах: переважали учні з початковим та середнім рівнями. Наприкінці

експерименту, однак, спостерігалася чітка різниця: у контрольній групі кількість

учнів із високим рівнем умінь становила лише близько 15%, тоді як в

експериментальній — понад 40%. Водночас кількість учнів із початковим рівнем

у контрольній групі зменшилася незначно, тоді як у експериментальній — майже

вдвічі.

71

Крім кількісних показників, важливим є і якісний аспект змін. Учні

експериментальної групи проявляли ініціативу у виконанні проєктних завдань,

самостійно шукали додаткові матеріали, виявляли зацікавленість у створенні

власних навчальних мініпрограм. Це свідчить не лише про зростання рівня знань,

а й про розвиток когнітивної та мотиваційної складових навчання.

Отже, аналіз результатів експерименту підтвердив ефективність

запропонованої методики: вона сприяла більш глибокому розумінню учнями

сутності програмування, формуванню стійких практичних навичок і

підвищенню внутрішньої мотивації до навчання.

Виявлення динаміки розвитку алгоритмічного та творчого мислення

Одним із ключових показників ефективності розробленої методики стала

динаміка розвитку алгоритмічного та творчого мислення учнів. Адже саме ці

компоненти лежать в основі успішного оволодіння програмуванням і є

важливими складовими загальної інформаційної культури школярів.

На початку експерименту більшість учнів як контрольної, так і

експериментальної підгрупи демонстрували обмежені навички алгоритмічного

мислення. Вони мали труднощі з побудовою логічних послідовностей дій, не

завжди могли передбачити результат виконання алгоритму та часто плуталися у

використанні структур керування. Творчий аспект діяльності проявлявся слабо

— учні переважно відтворювали готові приклади або виконували завдання за

шаблоном.

Після впровадження нової методики ситуація істотно змінилася. Уже через

кілька тижнів навчання в експериментальній групі спостерігалося зростання

здатності учнів до аналізу алгоритмів, побудови власних послідовностей дій, а

також самостійного виявлення помилок у програмному коді. На етапах

"Конструювання" та "Аналізу і вдосконалення" (згідно з адаптованою

таксономією) учні почали виявляти елементи логічної передбачуваності: перед

запуском програми вони намагалися уявити її результат, прогнозували можливі

проблеми, що свідчить про розвиток алгоритмічного мислення.

72

Щодо творчого мислення, то воно особливо яскраво проявилося на

заключному етапі — "Творчого застосування". Учні експериментальної групи

активно створювали власні мініпроєкти: прості ігри, навчальні тести,

калькулятори чи інтерактивні задачники. Під час цих завдань вони

демонстрували не лише технічні навички, а й уміння знаходити оригінальні

способи реалізації, поєднувати вивчені знання з новими ідеями.

Для кількісної оцінки розвитку мислення використовували аналітичні

спостереження та спеціальні завдання, спрямовані на виявлення вміння

планувати алгоритм, передбачати наслідки, удосконалювати код та генерувати

власні рішення. Результати показали, що рівень розвитку алгоритмічного

мислення в експериментальній групі зріс у середньому на 25%, а творчого — на

близько 30%. У контрольній групі зростання також спостерігалося, але воно було

менш вираженим (10–12%).

Під час спостереження за навчальною діяльністю вчитель також відзначав

зміну характеру роботи учнів: вони стали частіше ставити уточнювальні

запитання, обговорювати між собою різні варіанти вирішення задач, прагнули

оптимізувати код, навіть коли це не вимагалося умовою завдання. Такі зміни

свідчать про поступове формування у школярів критичного та креативного

підходу до розв’язання проблем, що є одним із ключових результатів

ефективного навчання програмування.

Отже, аналіз результатів експерименту підтверджує, що впроваджена

методика позитивно вплинула не лише на рівень технічних знань учнів, а й на

розвиток їхніх інтелектуальних і творчих здібностей. Розвиток алгоритмічного

мислення забезпечив кращу структурованість мислення, а творче мислення —

гнучкість і здатність до самостійного пошуку рішень, що разом формує основу

для подальшого успішного вивчення інформатики.

Порівняння результатів контрольної та експериментальної підгруп

Після завершення формувального етапу педагогічного експерименту було

проведено детальне порівняння результатів навчання учнів контрольної та

експериментальної підгруп восьмого класу. Основна мета цього аналізу полягала

73

у визначенні, наскільки ефективною виявилася запропонована методика

формування умінь програмування порівняно з традиційними методами

викладання.

Для порівняння використовувалися результати тестових, практичних та

проєктних робіт, а також показники активності, самостійності й мотивації учнів.

Кожен учень отримав підсумкову оцінку за п’ятибальною шкалою, що дозволило

виявити середні показники кожної підгрупи та порівняти їх.

У контрольній підгрупі середній рівень засвоєння навчального матеріалу

склав приблизно 3,5 бала, тоді як у експериментальній — 4,3 бала, що свідчить

про значну різницю в результативності. Найпомітніше відставання контрольної

групи спостерігалося у завданнях, де потрібно було самостійно створити

програму або вдосконалити готовий код. Учні цієї групи часто діяли за зразком,

рідко демонстрували ініціативу й мали труднощі з використанням декількох

структур управління в одному алгоритмі.

В експериментальній підгрупі, навпаки, учні впевненіше виконували

творчі завдання, проявляли вміння планувати послідовність дій, шукати

оптимальні рішення та активно обговорювали свої ідеї. Багато хто з них

створював програми, що виходили за межі поставлених вимог — наприклад,

додаткові функції у грі або зручніший інтерфейс користувача. Це свідчить про

розвиток не лише алгоритмічного, а й творчого мислення.

Різниця між групами простежувалася і в поведінкових аспектах. Під час

уроків учні експериментальної підгрупи частіше зверталися до вчителя з

уточнювальними питаннями, проявляли зацікавленість у результатах своєї

роботи, допомагали однокласникам. Учні контрольної підгрупи частіше

потребували підказок і рідше проявляли ініціативу у виконанні завдань.

Дані підсумкового анкетування також підтвердили позитивний вплив

нової методики: 78% учнів експериментальної групи зазначили, що

програмування стало для них цікавішим, тоді як у контрольній цей показник

становив лише 52%. Учні експериментальної підгрупи відзначили, що їм

74

подобається формат роботи з поступовими рівнями складності, а також

можливість самостійно оцінювати власний прогрес.

Узагальнюючи результати порівняльного аналізу, можна зробити

висновок, що використання адаптованої таксономії програмування в

навчальному процесі забезпечує значно вищий рівень сформованості

практичних умінь, розвиває критичне мислення та сприяє підвищенню

внутрішньої мотивації до навчання. У той час як традиційний підхід переважно

формує репродуктивні навички, нова методика стимулює самостійність,

креативність і аналітичність мислення, що є особливо важливим для сучасного

учня.

75

ВИСНОВКИ ДО ТРЕТЬОГО РОЗДІЛУ

Проведений педагогічний експеримент дозволив зробити узагальнені

висновки щодо ефективності розробленої методики формування умінь

програмування в учнів 8 класу. Отримані результати свідчать про позитивний

вплив запропонованого підходу на рівень засвоєння навчального матеріалу,

розвиток алгоритмічного та творчого мислення, а також підвищення мотивації

до вивчення інформатики.

Порівняння результатів контрольної та експериментальної груп показало,

що учні, які навчалися за вдосконаленою методикою, продемонстрували суттєво

кращі показники під час виконання тестових і практичних завдань. Зокрема, у

них спостерігалося більш глибоке розуміння логіки побудови програм, уміння

застосовувати отримані знання в нових ситуаціях, а також зросла здатність

самостійно аналізувати й виправляти помилки у власному коді.

Важливо відзначити, що експериментальна методика сприяла активізації

пізнавальної діяльності учнів. Використання проєктних завдань, елементів

гейміфікації, парного програмування та рефлексії дозволило створити умови для

формування стійкого інтересу до програмування. Учні охоче брали участь у

колективних формах роботи, проявляли ініціативу й творчість при розробці

власних програмних продуктів.

Аналіз анкетування засвідчив, що більшість учнів експериментальної

групи вважають нову методику цікавою, доступною та такою, що допомагає

краще зрозуміти складні теми. Вони відзначали, що завдяки практичній

спрямованості занять програмування стало для них не лише навчальним

предметом, а й способом самовираження.

Таким чином, результати педагогічного експерименту підтверджують

ефективність запропонованої методики формування умінь програмування. Вона

забезпечує не лише підвищення рівня знань і практичних навичок, а й сприяє

розвитку мислення, самостійності та мотивації учнів до подальшого вивчення

інформатики. Застосування цієї методики в освітньому процесі може стати

дієвим засобом підвищення якості навчання програмування.

76

ВИСНОВКИ

Проведене дослідження було спрямоване на вивчення та перевірку

ефективності методики формування умінь програмування в учнів 8 класу в

процесі вивчення інформатики. У ході виконання роботи було проаналізовано

теоретичні основи навчання програмування, визначено психолого-педагогічні

особливості учнів середнього шкільного віку, розроблено та впроваджено

експериментальну методику, а також здійснено аналіз отриманих результатів

педагогічного експерименту.

У першому розділі було розглянуто основні підходи до навчання

програмування в школі, проаналізовано чинні освітні програми, методи та

засоби, що застосовуються у процесі формування базових умінь програмування.

Особливу увагу приділено ролі алгоритмічного мислення та розвитку

пізнавальної активності учнів як важливих складових успішного засвоєння

програмування.

Другий розділ був присвячений обґрунтуванню та розробці власної

методики формування умінь програмування, яка поєднує традиційні та

інноваційні підходи. Зокрема, у методиці запропоновано використовувати

поетапне введення понять, практикоорієнтовані завдання, проєктну діяльність,

елементи гейміфікації та рефлексію навчальних досягнень. Також було описано

діагностичні інструменти, за допомогою яких здійснювалося відстеження рівня

сформованості знань, умінь і навичок учнів.

У третьому розділі наведено опис педагогічного експерименту, який

проводився в 8 класі. Клас було поділено на дві підгрупи: контрольну, де

навчання здійснювалося за стандартною програмою, та експериментальну, де

було впроваджено розроблену методику. У процесі дослідження

застосовувалися різноманітні методи: спостереження, тестування, проєктні

завдання, анкетування та самооцінка учнів. Результати експерименту показали,

що учні експериментальної групи продемонстрували значно вищі результати як

у теоретичній, так і в практичній частинах навчання.

77

Отримані дані свідчать, що впровадження нової методики сприяло

розвитку алгоритмічного та творчого мислення, підвищенню мотивації до

навчання та формуванню в учнів упевненості у власних силах під час виконання

програмних завдань. Учні стали активнішими, більш зацікавленими у створенні

власних проєктів, навчились самостійно знаходити та виправляти помилки в

коді, а також аналізувати логіку програм.

Підсумовуючи результати дослідження, можна зробити висновок, що

запропонована методика є ефективною й доцільною для використання у процесі

навчання програмування учнів 7–9 класів. Вона забезпечує не лише кращий

рівень засвоєння навчального матеріалу, але й сприяє розвитку ключових

компетентностей сучасного учня — логічного, алгоритмічного, критичного та

творчого мислення.

Отже, розроблена методика може бути рекомендована для впровадження в

освітню практику як інноваційний засіб підвищення якості навчання

програмування в закладах загальної середньої освіти. У подальших

дослідженнях доцільно розширити її застосування на старшу школу, а також

адаптувати для вивчення інших мов програмування та середовищ розробки.

78

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1.Балик Н. Р., Шмигер Г. П. Гейміфікація як засіб підвищення мотивації

учнів у вивченні інформатики. Наукові записки ТНПУ ім. В. Гнатюка. Серія:

Педагогіка. 2021. Вип. 2. С. 67–74.

2.Барна О. В. Методика навчання програмування у закладах середньої

освіти: дис. … канд. пед. наук. Київ, 2021. 280 с.

3.Брицька Т. А. Комп’ютерна грамотність і програмування в основній

школі: навчальний посібник. Тернопіль: Астон, 2022. 142 с.

4.Великий тлумачний словник сучасної української мови / уклад. В. Т.

Бусел. Київ; Ірпінь: Перун, 2004. 1440 с.

5.Державний стандарт базової середньої освіти: затверджено постановою

Кабінету Міністрів України № 898 від 30.09.2020 р.

URL: https://osvita.ua/legislation/Ser_osv/76886/ (дата звернення: 04.03.2025).

6.Дикий О. В. Python для школярів: навчальний посібник. Київ: Оріон,

2022. 180 с.

7.Енциклопедія освіти / за ред. В. Г. Кременя. Київ: Юрінком Інтер, 2008.

1040 с.

8.Закон України «Про освіту» від 05.09.2017 № 2145-VIII.

9.Зварич І., Калаур С. Мотиваційні аспекти навчання інформатики учнів

основної школи. Освітологія. 2021. №5. С. 95–103.

10.Іванюк І. Г. Вік та особливості мислення підлітків у контексті навчання

STEM. Педагогічні студії. 2020. №3. С. 14–21.

11.Інформатика. 8 клас: інтегрований курс / О. В. Жмуд та ін. Умань:

Візаві, 2020. 180 с.

12.Концепція розвитку STEM-освіти в Україні. МОН України, 2020.

URL: https://mon.gov.ua (дата звернення: 29.09.2025).

13.Кузьмінська О. Г., Литвинова С. Г. Дистанційне та змішане навчання:

навчально-методичний посібник. Київ: Генеза, 2020. 192 с.

14.Мамчур К. Проєктна діяльність у навчанні програмування в школі.

STEM-освіта: матеріали конференції. Київ: МОН України, 2021. С. 88–92.

https://osvita.ua/legislation/Ser_osv/76886/
https://mon.gov.ua/

79

15.Маджет Марджі. Scratch для дітей: практичний посібник. Львів:

Видавництво Старого Лева, 2021. 384 с.

16.Методика змішаного навчання в закладах освіти: колективна

монографія. Київ: НПУ ім. М. Драгоманова, 2021. 240 с.

17.Морзе Н. В., Барна О. В., Гладун М. А. Методика навчання інформатики

в школі: навчальний посібник. Київ: Оріон, 2021. 248 с.

18.Морзе Н. В., Барна О. В., Прошкін В. В. Аналіз цифрових

компетентностей учнів основної школи. Інформаційні технології і засоби

навчання. 2020. №4. С. 35–47.

19.Наказ МОН України № 1093 від 02.08.2024 «Про затвердження

рекомендацій щодо оцінювання результатів навчання».

URL: https://mon.gov.ua/npa/pro-zatverdzhennia-rekomendatsii-shchodo-

otsiniuvannia-resultativ-navchannia (дата звернення: 15.08.2025).

20.Національна програма інформатизації: Закон України.

URL: https://zakon.rada.gov.ua (дата звернення: 05.10.2025).

21.Підручник з інформатики для 7 класу / Н. В. Морзе та ін. Київ: Оріон,

2022. 256 с.

22.Програмування в школі: навчальний посібник / Л. Р. Бабенко та ін.

Харків: Основа, 2023. 208 с.

23.Роговченко Ю. В. Використання Python у шкільному курсі

інформатики. Інформатика та інформаційні технології. 2022. №1. С. 24–31.

24.Савчук Л. П. Формування алгоритмічного мислення учнів основної

школи: автореф. дис. … канд. пед. наук. Тернопіль, 2020. 24 с.

25.С Scratch Education Guide — (див. нижче у розділі іноземних джерел, бо

сайт англомовний).

26.Сучасні підходи до цифровізації освіти: колективна монографія. Львів:

ЛНУ ім. І. Франка, 2022. 300 с.

27.Суховірський О. В. Методика навчання інформатики у Новій

українській школі: навчально-методичний посібник. Київ: Генеза, 2021. 160 с.

https://mon.gov.ua/npa/pro-zatverdzhennia-rekomendatsii-shchodo-otsiniuvannia-resultativ-navchannia
https://mon.gov.ua/npa/pro-zatverdzhennia-rekomendatsii-shchodo-otsiniuvannia-resultativ-navchannia
https://zakon.rada.gov.ua/

80

28.Типова освітня програма з інформатики для 5–9 класів. МОН України,

2022.

URL: https://mon.gov.ua (дата звернення: 22.06.2025).

29.Токарська О. Р. Інтерактивні середовища навчання у вивченні мов

програмування. Сучасні цифрові технології та інноваційні методики навчання:

матеріали конференції. Тернопіль: ТНПУ ім. В. Гнатюка, 2022. С. 110–113.

30.Шмигер Г. П., Балик Н. Р. Цифрові інструменти педагога: навчальний

посібник. Тернопіль: ТНПУ ім. В. Гнатюка, 2023. 96 с.

31.Ященко Т. О., Литвинова С. Г. Інтерактивні технології навчання:

навчальний посібник. Київ: Педагогічна думка, 2020. 224 с.

32.Barna O., Oleksiuk V. Tools for Teaching Coding in Secondary School. ICT

in Education. Proc. 2023. P. 201–205.

33.Balik N., Shmyger G. Developing Programming Skills of Students Using

Interactive Environments. Modern ICT in Education: Proc. Conf. Ternopil, 2022. P.

140–144.

34.Code.org. Teaching Computer Science in Middle School.

URL: https://code.org/educate (дата звернення: 27.05.2025).

35.Oleksiuk V., Balyk N., Shmyger G. Development of ICT Competence of

Students in Programming Courses. ICTERI Proceedings. 2021. P. 112–125.

36.Scratch Education Guide.

URL: https://scratch.mit.edu/educators (дата звернення: 19.07.2025).

37.Shkarupa O., Liubarets V. Teaching Computer Science Using Gamification

Approaches. CEUR-WS. 2022. P. 502–512.

38.Skaskiv H. Innovative Approaches to Teaching Programming. Science and

Education Conference. Vienna, 2023. P. 52–58.

39.UNESCO. AI and Programming Skills Development in Schools. 2023.

URL: https://unesco.org/AI-in-education (дата звернення: 03.09.2025).

40.Python for Education: офіційний освітній гайд.

URL: https://www.python.org/education (дата звернення: 12.04.2025).

https://mon.gov.ua/
https://code.org/educate
https://scratch.mit.edu/educators
https://unesco.org/AI-in-education
https://www.python.org/education

	ВСТУП
	РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ ВИВЧЕННЯ МОВ ПРОГРАМУВАННЯ В ОСВІТНЬОМУ ПРОЦЕСІ
	1.1. Аналіз нормативних документів щодо вивчення мов програмування в школі
	1.2. Основні підходи до викладання мов програмування у 7–9 класах
	1.3. Порівняльний аналіз мов програмування, які використовуються в загальноосвітніх школах
	Текстові мови програмування у шкільному курсі
	Критерії вибору мови програмування для навчання

	1.4. Вікові особливості учнів 7–9 класів у контексті вивчення програмування
	Когнітивні особливості підлітків
	Мотиваційні чинники у вивченні програмування
	Труднощі у засвоєнні мов програмування
	Рекомендації щодо адаптації навчального матеріалу

	ВИСНОВКИ ДО ПЕРШОГО РОЗДІЛУ

	РОЗДІЛ 2. МЕТОДИКА ФОРМУВАННЯ УМІНЬ ПРОГРАМУВАННЯ В УЧНІВ 7–9 КЛАСІВ
	2.1. Концептуальні засади побудови методики
	Психолого-педагогічні основи формування умінь програмування
	Необхідність удосконалення традиційних підходів до навчання програмування
	Основна ідея та принципи запропонованої методики (адаптованої моделі за таксономією Блума)

	2.2. Модель формування умінь програмування (адаптована таксономія програмування)
	Етап 1. Усвідомлення (розуміння базових понять, синтаксису, структур керування)
	Етап 2. Застосування (написання простих алгоритмів і програм за зразком)
	Етап 3. Конструювання (самостійне створення програм із використанням кількох структур)
	Етап 4. Аналіз і вдосконалення (пошук помилок, оптимізація, робота з відлагодженням)
	Етап 5. Творче застосування (розробка власних мініпроєктів і розв’язання нестандартних задач)

	2.3. Практична реалізація методики у навчальному процесі
	Добір змісту навчального матеріалу відповідно до етапів формування умінь
	Приклади навчальних завдань і проєктів для учнів 7–9 класів
	Роль учителя в організації діяльності учнів і підтримці мотивації

	2.4. Оцінювання результатів навчання програмування
	Критерії оцінювання сформованості умінь програмування
	Діагностичні інструменти (самооцінка, тести, проєктні завдання)
	Відстеження динаміки розвитку учнів на різних етапах

	ВИСНОВКИ ДО ДРУГОГО РОЗДІЛУ

	РОЗДІЛ 3. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ РОЗРОБЛЕНОЇ МЕТОДИКИ
	3.1. Організація педагогічного експерименту
	Мета та завдання експерименту
	Контингент учасників: опис класу та підгруп
	Етапи проведення експерименту

	3.2. Методи та інструменти дослідження
	Спостереження за навчальною діяльністю учнів
	Тестові завдання для оцінки знань та умінь
	Проєктні завдання та практичні роботи
	Анкетування та самооцінка учнів

	3.3. Проведення експерименту
	Діагностика початкового рівня умінь програмування
	Впровадження методики формування умінь програмування
	Моніторинг та підтримка навчальної діяльності учнів

	3.4. Аналіз результатів експерименту
	Порівняння початкового та кінцевого рівня умінь
	Виявлення динаміки розвитку алгоритмічного та творчого мислення
	Порівняння результатів контрольної та експериментальної підгруп

	ВИСНОВКИ ДО ТРЕТЬОГО РОЗДІЛУ

	ВИСНОВКИ
	СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

