

електроенергії. Когенераційні установки забезпечують вуличне освітлення, роблячи місто безпечношим.

Загалом когенерація забезпечує електроенергію 104 об'єкти бюджетної сфери: 54 заклади освіти, 32 заклади гуманітарної сфери, 16 закладів охорони здоров'я та 2 об'єкти соціального захисту [2].

Сучасний розвиток Кам'янця-Подільського є результатом складної взаємодії історико-культурних, економічних, демографічних і екологічних факторів. Місто зуміло зберегти свою унікальну ідентичність, водночас інтегруючись у сучасні економічні процеси та урбаністичні тенденції.

Його подальший розвиток залежить від ефективного поєднання охорони історичної спадщини з модернізацією інфраструктури, диверсифікації економіки, активізації інноваційної діяльності та реалізації принципів сталого розвитку. Кам'янець-Подільський має усі передумови для того, щоб залишатися одним із найпривабливіших культурно-туристичних і освітніх центрів України, що гармонійно поєднує минуле, сучасне й майбутнє.

Список використаних джерел:

1. Касіянік І., Рибак І., Матуз О., Касіянік Л., Вітвіцький Я. Регіональні палеотури, як інтеративна форма пізнання ландшафту в структурі геотуристичного маршруту «TERRA PODOLICA». *Наукові записки ТНПУ ім. В. Гнатюка. Серія: Географія.* 2021. №2. (Вип. 51). С. 108–121.
2. Кам'янець-Подільська міська територіальна громада: Інвестиційний паспорт. URL: https://kam-pod.gov.ua/files/Investmentpassport2024.pdf?utm_source
3. Матвійчук Б. В. Суспільно-географічні аспекти релокації бізнесу в Україні в умовах війни. Наукові праці Кам'янець-Подільського національного університету імені Івана Огієнка: збірник за підсумками звітної наукової конференції викладачів, докторантів і аспірантів.. Кам'янець-Подільський, 2024, С. 469-471.

INTEGRATED GEOECOLOGICAL ASSESSMENT OF TERRITORIAL COMMUNITIES

Yaryna Sokol
yarynasokol2007@gmail.com
University of Rzeszow

The sustainable development of territorial communities increasingly depends on the ability to integrate natural, social, and economic dimensions of space into a coherent geoecological framework. This paper explores interdisciplinary approaches to assessing and mitigating geoecological problems within local communities, emphasizing the interaction between human activities and natural systems. Using case examples from Podillia and comparable regions of Eastern Europe, the research identifies methodological foundations for integrated geoecological assessment and suggests tools for strengthening local environmental resilience.

Key words: geoecology; territorial communities; sustainable development; interdisciplinary research; environmental resilience.

Modern territorial communities face a complex set of geoecological problems: soil degradation, water contamination, landscape fragmentation, and the declining quality of ecosystem services. These challenges cannot be addressed by environmental science alone, they require interdisciplinary collaboration among geographers, ecologists, planners, sociologists, and economists. Geoecological research serves as a platform that unites these disciplines through spatial analysis and sustainability indicators. The concept of geoecological assessment allows

local authorities to identify environmental risks, plan land use effectively, and evaluate ecological balance.

An integrated approach combines:

1. Geographical analysis – mapping natural conditions, landforms, and resource distribution using GIS;
2. Ecological evaluation – determining anthropogenic pressure, biodiversity indices, and resilience capacity;
3. Socioeconomic assessment – identifying community dependence on natural resources, demographic pressure, and economic structures;
4. Planning analysis – evaluating land-use plans and environmental policy frameworks.

This interdisciplinary model facilitates a comprehensive understanding of territorial sustainability. The GIS-based spatial synthesis is central, allowing researchers to overlay ecological, demographic, and economic data to identify zones of ecological stress or potential.

The Podillia region of Ukraine demonstrates diverse geoecological problems typical for many post-Soviet rural landscapes. Intensive agriculture and soil erosion threaten ecosystem stability, while uneven spatial development limits local adaptation capacity. Using integrated geoecological mapping, researchers from Vinnytsia and Khmelnytskyi have identified “hot zones” of degradation. For example, erosion-prone slopes with high anthropogenic load correlate with decreased water quality in tributaries of the Southern Bug River. Such findings highlight the importance of combining natural sciences (geology, ecology) with social sciences (local governance, economics) to develop adaptive management strategies for each community.

Interdisciplinary cooperation supports:

1. Ecological zoning that guides land use planning;
2. Environmental education programs that raise local awareness;
3. Participatory planning with community involvement in decision-making;
4. Sustainable agriculture and green infrastructure, ensuring long-term productivity without ecological decline.

Implementing these strategies requires not only technical tools but also institutional and educational support—thus connecting this theme with the fourth conference section on geoecological education.

Conclusions. Geoecological assessment offers a bridge between environmental science and local governance. It reveals how territorial communities can integrate spatial data, ecological indicators, and socioeconomic realities into practical sustainability policies. For Podillia and similar regions, the development of interdisciplinary teams and open spatial data platforms will be crucial in overcoming environmental risks and achieving balanced territorial development.

References:

1. Dobryanska, N. (2023). *Geoecological Foundations of Territorial Community Development in Podillia*. Vinnytsia: Vasyl Stus University Press.
2. Hurniak, M. & Shabliy, O. (2021). Spatial Organization of Socio-Ecological Systems in Ukraine. *Ukrainian Geographical Journal*, 3 (115), 22-30.
3. Meadows, D. H. et al. (2004). *Limits to Growth: The 30-Year Update*. Chelsea Green Publishing.
4. Moldan, B., Janoušková, S., & Hák, T. (2012). How to Understand and Measure Environmental Sustainability. *Ecological Indicators*, 17, 4–13.
5. United Nations Development Programme (UNDP). (2020). Human Development Report: The Next Frontier – Human Development and the Anthropocene.
6. Zhuk, P. (2022). Integrated GIS-Based Geoecological Assessment for Rural Territories. *Bulletin of Environmental Studies*, 14(2), 55-68.