Институт биологии южных морей им. А. О. Ковалевского НАН Украины пр. Нахимова, 2, Севастополь, 99011, Украина

ПОКАЗАТЕЛИ ЗАГРЯЗНЕНИЯ ДОННЫХ ОСАДКОВ И ХАРАКТЕРИСТИКА МАЛАКОФАУНЫ КЕРЧЕНСКОГО ПРОЛИВА (2009 г.)

Исследовали донные осадки и макрозообентос Керченского пролива (август 2009 г.). Содержание хлороформ-экстрагируемых веществ в донных осадках варьировало от 0,7 мг/100 г в песках до 103 мг/100 г сух. д.о. в илах. Максимальная концентрация нефтяных углеводородов составила 6,2 мг/100 г. В составе малакофауны найдено 20 видов (10 – Gastropoda и 10 – Bivalvia). Наибольшая численность отмечена для *Hydrobia acuta* и *Mytilaster lineatus* (37-39 тыс. экз./м²), биомасса – *Rapana venosa* и *Cerastoderma glaucum* (более 800 г/м²).

Ключевые слова: Керченский пролив, загрязнение, нефтяные углеводороды, моллюски

Керченский пролив постоянно подвергается антропогенному воздействию, в результате которого разрушаются биоценозы. Одним из основных компонентов загрязнения морских акваторий являются нефть и нефтепродукты. К хроническому загрязнению могут добавляться и аварийные разливы. Так, 11 ноября 2007 г. в Керченском проливе во время экстремального шторма потерпел аварию танкер «Волгонефть — 139», в результате чего в воды пролива вылилось около 1300 т мазута. В связи с этим представляло интерес оценить влияние загрязненности донных осадков пролива на показатели разнообразия и количественного развития малакофауны.

Материал и методы исследований

Донные осадки исследовались на 22 станциях в августе 2009 г. Макрозообентос анализировали на 20-ти станциях (рис. 1).

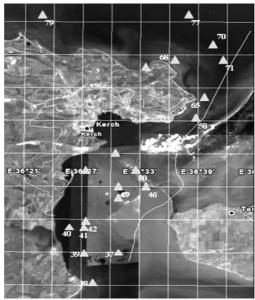


Рис. 1. Расположение станций отбора проб донных осадков и макрозообентоса

Макрозообентос отбирали дночерпателем Петерсена с площадью захвата 0,038 м² в трёх повторностях на каждой станции. Пробы промывали через сито с диаметром ячеи 1 мм и фиксировали этиловым спиртом. В лабораторных условиях проводили обработку ISSN 2078-2357. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол., 2012, №2 (51) 13

фиксированного материала. Определяли видовой состав моллюсков, численность и сырую массу организмов (фиксированных). Взвешивание двустворчатых моллюсков проводили после их вскрытия и удаления фиксирующего раствора из мантийной полости.

В пробах донных осадков определялось содержание хлороформ-экстрагируемых веществ и нефтяных углеводородов методом инфракрасной спектрометрии.

Результаты исследований и их обсуждение

Донные осадки, отобранные в Керченском проливе в 2009 г., были представлены в 73% проб чёрными или тёмно-серыми илами (часто с примесью ракуши или песка) с выраженным поверхностным окисленным слоем толщиной 3–5 мм, в 23% — песками (с примесью ила или ракуши) и в 4 % — ракушняком с примесью ила.

Одним из важных показателей экологического состояния акватории являются хлороформ-экстрагируемые вещества (ХЭВ). Ранее в донных отложениях шельфовой зоны Чёрного моря было выделено 5 уровней их загрязнения [1]. Количество ХЭВ в донных осадках Керченского пролива в 2009 г. колебалось от 0,7 мг/100 г (ст. 50) в песках до 103 мг/100 г в илах (ст. 28) (рис. 2). Однако полученные значения ХЭВ не превышали ранее зафиксированных и характерных для исследуемого района (для ракушняков Азовского моря – 20 мг/100 г, для пелитовых илов – до 230 мг/100 г) [2].

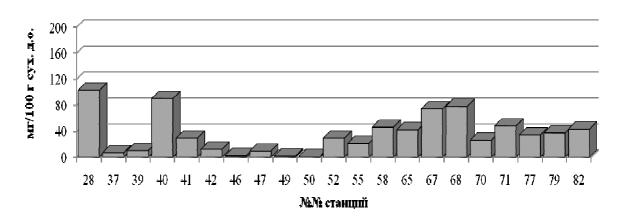


Рис. 2. Концентрации ХЭВ в донных осадках Керченского пролива в 2009 г.

Полученные данные свидетельствуют о том, что более чем на 50% станций концентрации ХЭВ в донных осадках Керченского пролива соответствуют I – II уровню, что характерно для относительно чистых районов. На некоторых станциях их концентрации были близки либо соответствовали III-му уровню загрязнения. На 90% станций концентрация нефтяных углеводородов (НУ) в донных осадках составляла менее 5 мг/100 г. Такие значения можно считать следовыми. На остальных станциях уровень нефтяного загрязнения не превышал величин, характерных для слабозагрязненных акваторий Чёрного моря [2]. В 2007 г. (съёмка проводилась после разлива мазута) были зафиксированы значения НУ в донных осадках от 0,4 до 16,8 мг/100 г [4], тогда как в 2009 г. – от 0,1 до 6,2 мг/100 г сух. д.о., т.е. можно отметить тенденцию к уменьшению количества НУ в донных отложениях исследуемой акватории. Полученные данные могут свидетельствовать о деградации поступивших вследствие аварии нефтепродуктов и о пятнистости распределения загрязнения донных осадков.

При оценке видового разнообразия и количественных характеристик моллюсков пролива были выделены 4 района (рис. 1) – Черноморский (ст. 37-39), Южный (ст. 40-52), Северный (ст. 55-65), Азовский (ст. 67-79). В составе малакофауны в 2009 г. найдено 20 видов (10 − Gastropoda и 10 − Bivalvia). В целом моллюски составляли около 35% общего видового 14 ISSN 2078-2357. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол., 2012, №2 (51)

богатства макрозообентоса пролива (для приазовского сектора – до 50%). В числе наиболее массовых видов можно отметить *Hydrobia acuta* и *Mytilaster lineatus* (таблица). Как и эти два вида, *Anadara inaequivalvis* в большей степени приурочена к Северному и Азовскому участкам.

 $\it Tаблица$ Показатели встречаемости (%) моллюсков на различных участках Керченского пролива, 2009 г.

Наименование видов	Весь район	Участок пролива			
		Черно- морский	йынжӨ	Северный	Азовский
Hydrobia acuta (Draparnaud, 1805)	70	0	62,5	100	100
Mytilaster lineatus (Gmelin, 1791)	65	33,3	37,5	100	100
Anadara inaequivalvis (Bruguiere, 1789)	40	0	12,5	66,7	83,3
Parvicardium exiguum (Gmelin, 1791)	40	33,3	75	33,3	0
Bittium reticulatum (da Costa, 1778)	25	33,3	50	0	0
Chamelea gallina (Linnaeus, 1758)	25	33,3	50	0	0
Lentidium mediterraneum (O. G. Costa, 1829)	25	0	12,5	66,7	33,3
Rapana venosa (Valenciennes, 1846)	25	33,3	12,5	100	0
Abra segmentum (Récluz, 1843)	20	0	12,5	0	50
Cerastoderma glaucum (Bruguière, 1789)	15	0	0	33,3	33,3
Cyclope pellucida Risso, 1826	15	33,3	12,5	33,3	0
Abra nitida milachewichi Nevesskaja, 1963	10	0	25	0	0
Retusa truncatula (Bruguière, 1792)	10	0	0	33,3	16,7
Rissoa membranacea (J. Adams, 1800)	10	0	25	0	0
Rissoa parva (da Costa, 1778)	10	0	25	0	0
Tellina tenuis da Costa, 1778	10	0	25	0	0
Chrysallida interstincta (Adams J., 1797)	5	0	0	0	16,7
Cylichnina robagliana (Fischer, 1867)	5	0	12,5	0	0
Pitar rudis (Poli, 1795)	5	0	12,5	0	0
Tellina fabula Gmelin, 1791	5	33,3	0	0	0

Численность и биомасса моллюсков были распределены очень неравномерно (рис. 3). Общая численность моллюсков на Черноморском и Южном участках пролива в большинстве случаев не превышала 1 тыс. $9\kappa3./m^2$. На Серенном и Азовском участках общая численность возрастала до 5-30 тыс. $9\kappa3./m^2$, а на ст. – свыше 60 тыс. $9\kappa3./m^2$. Наибольшая численность отмечена для *Hydrobia acuta* и *Mytilaster lineatus* (37-39 тыс. $9\kappa3./m^2$). Биомасса моллюсков была наиболее высока на северном участке – до 940-1200 г/м². Столь высокие показатели обеспечивались за счет *Rapana venosa* и *Cerastoderma glaucum* (для каждого вида более 800 г/м²).

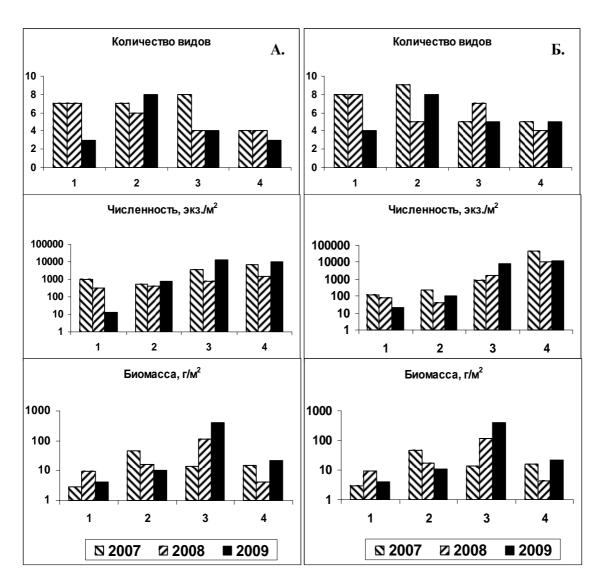


Рис. 3. Распределение численности и биомассы моллюсков

На Черноморском и Южном участках биомасса моллюсков в основном не превышала 10 г/m^2 , только на ст. 47 и 49 возрастая до $50\text{-}80 \text{ г/m}^2$.

Выводы

Нефтяное загрязнение вызывает колебание численности и видового сорстава основных видов моллюсков, представленных в керченском проливе. Однако, на протяжении 2007-2009 г.г. коренных изменений численности, биомассы и разнообразия моллюсков в Керченском проливе не отмечено.

- 1. *Миронов О. Г.* Потоки нефтяных углеводородов через морские организмы / О. Г. Миронов // Морск. экол. журн. -2006. Т. 5, № 2. С. 5-14.
- 2. *Миронов О. Г.* Биологические ресурсы моря и нефтяное загрязнение / О. Г. Миронов. М. : Пищевая пром-сть, 1972.-105 с.
- 3. *Еремеев В. Н.* Предварительные результаты оценки нефтяного загрязнения Керченского пролива после аварии судов 11 ноября 2007 г. / В. Н. Еремеев, О. Г. Миронов, С. В. Алёмов, Н. В. Бурдиян [и др.] // Морск. экол. журн. 2008. Т. 7, № 3. С.15 24.

С. В. Альомов, О. А. Тіхонова

Інститут біології південних морів ім. О. О. Ковалевського НАН України

ПОКАЗНИКИ ЗАБРУДНЕННЯ ДОНИХ ВІДКЛАДЕНЬ І ХАРАКТЕРИСТИКА МАЛОКАФАУНИ КЕРЧЕНСЬКОЇ ПРОТОКИ (2009 р.)

У серпні 2009 р. досліджували донні відкладення і макрозообентос Керченської протоки. Вміст хлороформ-екстрагованих речовин у донних відкладеннях змінювався від 0,7 мг/100 г в пісках до 103 мг/100 г сух. д.в. в намулах. Максимальна концентрація нафтових вуглеводнів становила 6,2 мг/100 г. Виявлено представників 20 видів малакофауни (10 – Gastropoda і 10 – Bivalvia). Найбільшою була чисельність *Hydrobia acuta* і *Mytilaster lineatus* (37-39 тис. екз./м²), біомаса – *Rapana venosa* і *Cerastoderma glaucum* (більше 800 г/м²).

Ключові слова: Керченська протока, забруднення, нафтові вуглеводні, молюски

S. V. Alymova, Y. A. Tikhonova

The A. O. Kovalevsky Institute of the Southern Seas NAS of the Ukraine

THE KERCH STRAIT SEDIMENT POLLUTION INDICES AND MALACOFAUNA CHARACTERISTICS

Sediments and macrozoobenthos of the Kerch Strait were studied in August 2009. The content of chloroform-extractable substances in bottom sediments ranged from 0.7 mg/100 g in sand up to 103 mg/100 g of dry sediment in muds. The maximum concentration of oil hydrocarbons was 6.2 mg/100 g. In malacofauna 20 species were found (10 – Gastropoda and 10 – Bivalvia). The highest population density was in *Hydrobia acuta* and *Mytilaster lineatus* (37-39 thousand ind./m²), the highest biomass – in *Rapana venosa* and *Cerastoderma glaucum* (more than 800 g/m²).

Key words: Kerch Strait, pollution, oil hydrocarbons, shellfish

УДК 594.1(3):591.5:575.857(262)

Ж. А. АНТИПУШИНА, А. Р. КОСЬЯН

Институт проблем экологии и эволюции им. А. Н. Северцова РАН Ленинский пр-т, 33, Москва, 119071, Россия

ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ АНАЛИЗА СТАБИЛЬНЫХ ИЗОТОПОВ УГЛЕРОДА И АЗОТА В ОРГАНИЧЕСКОМ ВЕЩЕСТВЕ РАКОВИН ЧЕРНОМОРСКИХ МОЛЛЮСКОВ

В работе приводятся предварительные результаты анализа стабильных изотопов углерода и азота в органическом веществе раковин и крышечки черноморских двустворок *Chamelea gallina* и рапаны *Rapana venosa*. Изотопный анализ раковин венерок и рапаны обнаруживает уменьшение содержания более «легкого» изотопа углерода 13 С в белках раковины с глубиной обитания. Самое высокое содержание δ^{15} N зафиксировано в раковинах с косы Тузла и берегов Азовского моря, что предположительно связано с привносом органики пресными водами. По результатам анализа крышечки рапаны обнаружена разница в содержании δ^{13} С в разных зонах прироста, указывающая на то, что ювенильные особи обитали на большей глубине, чем взрослые.

Ключевые слова: стабильные изотопы, углерод, азот, Rapana venosa, Chamelea gallina, Черное море

Анализ стабильных изотопов в органогенных карбонатах и органическом веществе скелетов беспозвоночных и костей животных широко применяется в археологии и палеоэкологии [1–5]. При изучении экологии живущих видов этот метод все еще не нашел достаточно широкого применения как в силу высокой стоимости, так и из-за сложности выявления влияния