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By using the Krasnoselskii theorem, we obtain general conditions for the unique solvability of boundary-
value problems for (non)linear fractional functional-differential equations.

Iз застосуванням теореми Красносельського отримано загальнi умови однозначної розв’язностi
крайових задач для (не)лiнiйних функцiонально-диференцiальних рiвнянь дробового порядку.

Paper dedicated to Professor Michal Fečkan
on the occasion of his 60 th anniversary

The perspectives of a wide application of the fractional functional-differential equations (FFDE)
made them interesting for numerous researchers. In analogue to the ordinary differential equation
with derivatives of any natural order, conditions on the unique solvability of the boundary-value
problem for FFDE is a basic stage that should be solved for further application.

1. Introduction. The fractional differential equations (FDE), which are currently a hot
topic, are represented by the numerous papers, here is referred a few of them only [1 – 7].

The application scale of mentioned equations is quite wide. We would like to highlight the
[5], where authors made a complex overview of possible applications of FDE. As the first of
all, it was mentioned follow topics: the theories of differential, integral, and integro-differential
equations, and special functions of mathematical physics, as well as their extensions and generali-
zations for one and more variables. Then, there are some present-day applications of fractional
calculus, include fluid flow, rheology, dynamical processes in self-similar and porous structures,
diffusive transport akin to diffusion, electrical networks, probability and statistics, control theory
of dynamical systems, viscoelasticity, electrochemistry of corrosion, chemical physics, optics,
and signal processing, and so on.
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Conditions on the unique solvability of the boundary value problem for functional differential
equations is a fundamental and non-trivial part of the study, and, it is not surprising that many
publications are focused to them, for example, [8 – 11].

In the present paper is utilized our previous experience for functional-differential equations
with derivatives of natural order [12 – 15]. Besides, our motivation were the work [1], where
authors studied conditions on the unique solvability of the ordinary differential equations of the
fractional order and the work [7], where author study conditions on the unique solvability of the
initial-value problem for functional differential equations of the fractional order.

The main focus of the present investigation is the conditions lookup of the unique solvability
of the boundary value problem for the FFDE. There is a perspective way to solve the specified task
is using the Krasnoselski Theorem on the unique solvability in the suitable cone. Thereby, here
is arisen the problem to construct that cone, that was successfully done in the present work.

2. Problem formulation. Here is considered the FFDE

cDq
ax(t) = (lx)(t) + r(t), t ∈ [a, b], (1)

with boundary-value condition

x(a) = φ(x), (2)

where cDq
a is the Caputo fractional derivative of order q ∈ (0, 1) with the lower limit zero and

l ∈ W
(
[a, b],Rn

)
→ L1

(
[a, b],Rn

)
is generally speaking nonlinear operator, φ ∈ W

(
[a, b],Rn

)
→

→ Rn is nonlinear functional defined in the space ∈ W
(
[a, b],Rn

)
of vector functions with

absolutely continuous components of u, function r ∈ L1

(
[a, b], Rn

)
.

The main goal of this investigation is to establish the conditions on the unique solvability of
the boundary value problem for FFDE (1), (2).

The paper is constructed in a next way. In the Section 3 we give the necessary notation and
definitions, in Section 4 one can find the auxiliary Theorems and Lemmas, next in Section 5 is
the main result on the unique solvability of the nonlinear FFDE with boundary-value conditions.
Then, in Section 6 we give the proof of the main result Theorem 2. We give the conditions on
the unique solvability of the boundary value problem for the linear FFDE in Section 7. Finally,
in Section 8 is some discussion.

3. Notations and definitions.
(a) q ∈ (0, 1) is an order of the Caputo fractional derivative cDq

a.

(b) The interval Ia = [a, b].

(c) R := (−∞,∞), ‖x‖ := max1≤i≤n |xi| for x = (xi)
n
i=1 ∈ Rn.

(d) L1

(
Ia,Rn

)
is the Banach space of all the summable vector-functions u : [a, b]→ Rn with

the standard norm

L1

(
Ia,Rn

)
3 u 7−→

b∫
a

‖u(s)‖ds.

(e) C
(
Ia,Rn

)
is the Banach space of continuous functions u from Ia to Rn with the norm

C
(
Ia,Rn

)
3 u 7−→ ‖u‖C := max |u(t)|, t ∈ Ia.
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(f) W
(
Ia,Rn

)
is the Banach space of absolutely continuous functions u from Ia to Rn with

the norm

W
(
Ia,Rn

)
3 u 7−→ ‖u‖W :=

b∫
a

‖ cDu(s)‖ ds+ ‖u(a)‖. (3)

(g) The set W+
(
Ia,Rn

)
is defined by the formula

W+
(
Ia,Rn

)
:=
{
u = (ui)

n
i=1 ∈ W

(
Ia,Rn

)
: min
t∈Ia

ui(t) ≥ 0, i = 1, 2, . . . , n
}
. (4)

(h) The set W++
(
Ia,Rn

)
is defined by the formula

W++
(
Ia,Rn

)
:=
{
u = (ui)

n
i=1(t) ∈ W+

(
Ia,Rn

)
:

ess sup
t∈Ia

cDq
aui(t) ≥ 0, ui(a) ≥ 0, i = 1, 2, . . . , n

}
. (5)

In what follows, the symbols W
(
Ia,Rn

)
, W+

(
Ia,Rn

)
, W++

(
Ia,Rn

)
corresponding to the

fixed a, b, and n will usually appear simply as W, W+, W++.

Definition 1 [16]. By a solution of the problem (1), (2) we mean a vector-function x ∈ W
with property (2) and satisfying (1) for a.e. t ∈ Ia.

Definition 2 [2]. For a function f given on the interval Ia, theCaputo derivative of fractional
order q is defined by

cDq
af(t) =

1

Γ(1− q)
d

dt

t∫
a

(t− s)−qf(s)ds,

where Γ(q) : [0,∞)→ R is Gamma-function and

Γ(q) :=

∞∫
0

tq−1e−tdt.

The q -th Riemann-Liowille fractional order derivative of f, is defined by

LDq
af(t) =

1

Γ(1− q)
d

dt

 t∫
a

(t− s)−qf(s)ds+ (t− a)−qf(a)

.
Definition 3 [5]. The Caputo derivative of order q for a function f : Ia → R can be writ-

ten as
cDq

af(t) = LDq
a

(
f(t)− (t− a)−qf(a)

)
.

It is known [5] that the Riemann – Liowille fractional derivative depends on initial conditions.
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Definition 4. Let h = (hk)
n
k=1 : W → Rn be a linear mapping. We say that a linear operator

p = (pk)
n
k=1 : W → L1 belongs to the set Sa,h if the boundary-value problem

cDq
au = (pu)(t) + α(t), t ∈ Ia, (6)

u(a) = h(u) + c, (7)

has a unique solution u = (uk)
n
k=1 for any α = (αk)

n
k=1 ⊂ L1 and c = (ck)

n
k=1 ⊂ Rn and,

moreover, the solution of (6), (7) possesses the property

min
t∈Ia

uk(t) ≥ 0, k = 1, 2, . . . , n,

whenever the functions α = (αk)
n
k=1, and the constants c = (ck)

n
k=1, appearing in (6) and (7)

are non-negative.
4. Auxiliary propositions. For further investigation we will need the next lemmas from [5].
Lemma 1 ([5], Lemma 2.21). Let 0 < q < 1 and let x(t) ∈ L1, x(t) ∈ C or x(t) ∈ W, then

cDq
aI
q
ax(t) = x(t)

and
cDq

bI
q
bx(t) = x(t),

where

Iqax(t) =
1

Γ(q)

t∫
a

(t− s)q−1x(s)ds, x > a, (8)

and

Iqbx(t) =
1

Γ(q)

b∫
t

(t− s)q−1x(s)ds, x < b. (9)

Lemma 2 ([5], Lemma 2.22). Let 0 < q < 1. If x(t) ∈ W or x(t) ∈ C, then

Iqa
cDq

ax(t) = x(t)− x(a)

and
Iqb

cDq
bx(t) = x(t)− x(b),

where Iqax(t) and Iqb are defined by (8) and (9) correspondingly.
In view of Definition 2 and Lemma 1 and Lemma 2 the next obvious Lemma is true.
Lemma 3. The problem (1), (2) is equivalent to the equation

x(t) = φ(x) +
1

Γ(q)

t∫
a

(t− s)q−1(lx)(s)ds+
1

Γ(q)

t∫
a

(t− s)q−1r(s)ds, t ∈ Ia,

where x(t) ∈ W.
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To prove our main result, we use the following statement on the unique solvability of an
equation with a Lipschitz type non-linearity established in [17].

Let us consider the abstract operator-equation

Fx = z, (10)

where F : E1 → E2 is a mapping between a normed space 〈E1, ‖·‖E1
〉 and a Banach space

〈E2, ‖·‖E2
〉 over the field R, and z is an arbitrary element from E2.

Let Ki ⊂ Ei, i = 1, 2, be cones [18]. The cones Ki, i = 1, 2, induce natural partial orderings
of the respective spaces. Thus, for each i = 1, 2, we write x 5Ki y and y =Ki x if and only if
{x, y} ⊂ Ei and y − x ∈ Ki.

Theorem 1 ([17], Theorem 49.4). Let the cone K2 be normal and generating. Furthermore,
let Ψk : E1 → E2, k = 1, 2, be additive and homogeneous operators such that Ψ−11 and
(Ψ1 + Ψ2)

−1 exist and possess the properties

Ψ−11 (K2) ⊂ K1, (11)

(Ψ1 + Ψ2)
−1(K2) ⊂ K1 (12)

and, furthermore, let the order relation

Ψ1(x− y) 5K2 Fx− Fy 5K2 Ψ2(x− y) (13)

be satisfied for any pair (x, y) ∈ E2
1 such that x =K1 y.

Then equation (10) has a unique solution for an arbitrary z from E2.

Let us recall two definitions (see, e.g., [17, 18]).
Definition 5. A cone K2 ⊂ E2 is called normal if there exists a constant γ ∈ (0,+∞) such

that ‖x‖E2 ≤ γ‖y‖E2 for arbitrary {x, y} ⊂ E2 with the property 0 5K2 x 5K2 y.

Definition 6. A cone K1 is called generating in E1 if every element u ∈ E1 can be
represented in the form u = u1 − u2, where {u1, u2} ⊂ K1.

4.1. Lemmas. We need some technical lemmas.
Lemma 4. The following propositions on the space W are true:
(a) the set W+ is a cone in the space W;

(b) the set W++ is a normal and reproducing cone in the space W.

Proof. Let us proof assertion (a). If {u1, u2} ⊂ W++ and {λ1, λ2} ⊂ [0,+∞), then, obvi-
ously, λ1u1+λ2u2 lies in W++ as well. Suppose that u ∈ W++ and −u ∈ W++ simultaneously.
Taking into account the definition of W++, we have cDq

au ≡ 0 and, moreover, u(a) = 0, whence
it is obvious that u ≡ 0. Thus, W++ is a cone in W.

Let us proof assertion (b). In order to check that the cone W++ is normal, it is sufficient to
show that every set of the form{

x ∈ W : {x− u, v − x} ⊂ W++}, u, v ∈ W, max{‖u‖W , ‖v‖W} ≤ 1
}
, (14)

is bounded with respect to the norm ‖·‖W (see (3)). Indeed, if an arbitrary x belongs to set (14),
then for a.e. t ∈ Ia

cDq
au(t) ≤ cDq

ax(t) ≤ cDq
av(t), 0 ≤ u(a) ≤ x(a) ≤ v(a),
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componentwise. Therefore,

‖x‖W =

b∫
a

‖cDq
ax(s)‖ ds+ ‖x(a)‖ ≤ ‖u‖W + ‖v‖W ≤ 2,

which, in view of the arbitrariness of x, implies that set (14) is bounded.
Finally, let us check, that the cone W++ is generating cone in the space W. To proof that,

it is sufficient to show that every element x of W admits a majorant in W++. Let x ∈ W be
arbitrary. Then, in view of Lemma 3,

x(t) =
1

Γ(q)

d

dt

t∫
a

(t− s)q−1X(s)ds+ x(a), t ∈ Ia, (15)

where X ∈ L1, X = cDq
ax. Equality (15) implies that, componentwise,

cDq
ax(t) ≤ cDq

au(t), t ∈ Ia,

where

u(t) =
1

Γ(q)

d

dt

t∫
a

(t− s)q−1|X(s)|ds+ |x(a)|, t ∈ Ia. (16)

It is obvious from (16) that u(a) ≥ 0 and cDq
au are non-negative and, therefore, u is an element

of W++. This, due to the arbitrariness of x, proves that W++ is generating.
Lemma 4 is proved.
Taking into account Definition 2 and Lemma 3, let us define a linear operator Θp,h : W →W

by putting

(Θp,hu)(t) := u(t)− 1

Γ(q)

t∫
a

(t− s)q−1(pu)(s)ds− u(a) (17)

for all u ∈ W.

Lemma 5. Function x from the space W is a solution of the equation

(Θp,hx)(t) =
1

Γ(q)

t∫
a

(t− ξ)q−1r(ξ)dξ + c, t ∈ Ia,

where r ∈ L1, c ∈ Rn, if and only if it is a solution of the non-local boundary-value
problem (1), (2).

The next lemma states the relation between the property described in Definition 4 and the
positive invertibility of operator (17).
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Lemma 6. Let p = (pk)
n
k=1 : W → L1 is linear operator such that

p ∈ Sa,h, (18)

then the linear operator Θp,h : W → W given by formula (17) is invertible and, moreover, its
inverse Θ−1p,h is satisfies the inclusion

Θ−1p,h(W++) ⊂ W+. (19)

Proof. Suppose that mapping l belongs to the set Sa,h. Given an arbitrary function y =

= (yk)
n
k=1 ∈ W, consider the equation

Θp,hu = y. (20)

Since y ∈ W, then cDq
ay ∈ L1 and

y(t)− y(a) =
1

Γ(q)

d

dt

t∫
a

(t− s)q−1 cDq
ay(s)ds.

According to (18), there exists a unique function u ∈ W such that

cDq
au(t) = (pu)(t) + cDq

ay(t), t ∈ Ia,

u(a) = h(u) + y(a).

By Lemma 5, it follows that u is a unique solution of equation (20). Due to the arbitrariness of
y ∈ W, it follows that Θ−1p,h exists and, hence, u = Θ−1p,hy.

Inclusion (18) also guarantees that if the functions yk, k = 1, 2, . . . , n, are such that

cDq
ayk(t) ≥ 0, y(a) ≥ 0, (21)

then the components of u are non-negative and, therefore, Θ−1p,hy ∈ W
+. However, relations (21)

mean that y ∈ W++ (see Notation (h)). Since y is arbitrary, we thus arrive at the required
inclusion (19).

From the relation (17) follows the next obvious lemma.
Lemma 7. The identity

Θp,h + Θξ,γ = 2Θ 1
2
(p+ξ), 1

2
(h+γ). (22)

holds for arbitrary linear operators {p, ξ} : W → L1, i = 1, 2.

5. Main result. The main general result of this paper is the next theorem.
Theorem 2. Assume that there exist some linear operators p = (pk)

n
k=1 : W → L1, ξ =

= (ξk)
n
k=1 : W → L1, and linear functionals h = (hi)

n
i=1 : W → Rn, γ = (γi)

n
i=1 : W → Rn,

which satisfy inclusions

p ∈ Sa,h,
1

2
(p+ ξ) ∈ Sa, 1

2
(h+γ), (23)
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and such that for arbitrary functions u = (uk)
n
k=1 : Ia → Rn, v = (vk)

n
k=1 : Ia → Rn from W

with the properties

uk(t) ≥ vk(t), t ∈ Ia, k = 1, 2, . . . , n, (24)

the inequalities

ξk(u− v)(t) ≤ (lku)(t)− (lkv)(t) ≤ pk(u− v)(t), t ∈ Ia, k = 1, 2, . . . , n, (25)

and
γk(u− v)(t) ≤ φk(u)− φk(v) ≤ hk(u− v), k = 1, 2, . . . , n,

hold.
Then the non-local nonlinear boundary-value problem (2) for nonlinear FFDE (1) has a

unique solution for an arbitrary function r ∈ L1.

6. Proof of Theorem 2. Let us take E1 = E2 = W and define a mapping F : W → W by
setting

(Fu)(t) := (Θl,φu)(t), t ∈ [a, b], (26)

for any u from W, where Vl,φ is given by (17). Then equation (26) takes form (10) with

z(t) :=
1

Γ(q)

t∫
a

(t− ξ)q−1r(ξ)dξ, t ∈ Ia.

Consider problem (1), (2). It is clear from Lemma 5 that an absolutely continuous vector
function u = (uk)

n
k=1 : Ia → Rn is a solution of (1), (2) if, and only if it satisfies the equation

Θl,φu = z.

Assumption (25) means that the estimate

−pk(u− v)(t) ≤ −(lku)(t) + (lkv)(t) ≤ −ξk(u− v)(t), t ∈ Ia,

is true for any u and v with property (24). The relation

cDq
auk(t)− cDq

avk(t)− pk(u− v)(t) ≤

≤ cDq
auk(t)− cDq

avk(t)− (lku)(t)− (lkv)(t) ≤

≤ cDq
auk(t)− cDq

avk(t)− ξk(u− v)(t), (27)

hold for almost all t from Ia.

Let us specify the linear mappings Ψik : W →W, i = 1, 2, k = 1, 2, . . . , n, by the next way

(Ψ1ku)(t) := Θp,h, t ∈ Ia, (28)

(Ψ2ku)(t) := Θξ,γ , t ∈ Ia, (29)
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where {u, v} ∈ W have the properties (24). Then integrating (27) and taking (28), (29) into
account, we have

Ψ1k(u− v)(t) ≤ u(t)− 1

Γ(q)

t∫
a

(t− s)q−1(lku)(s)ds− φ(u)−

− (v(t)− 1

Γ(q)

t∫
a

(t− s)q−1(lkv)(s)ds− φ(v)) ≤

≤ Ψ2k(u− v)(t), t ∈ Ia, (30)

for any u = (uk)
n
k=1 and v = (vk)

n
k=1 with properties (24).

In view of the mapping Θl,φ (see formulae (17)) and the sets W+ and W++ (see (4) and (5))
we see that estimates (27) and (30) ensure the validity of the inclusion

Ψ1(u− v) ≤W++ Θl,φu−Θl,φv ≤W++ Ψ2(u− v)

for any function u and v with properties (24) from W.

Now we determine K1 and K2 by the formulae

K1 :=W+, K2 :=W++. (31)

By Lemma 4, the set K1 forms a cone in the normed space W, whereas K2 is a normal and
generating cone in the Banach space W.

From Lemma 7 follows, that identity (22) is fulfilled and, therefore,

Ψ1 + Ψ2 = 2Θ 1
2
(p+ξ), 1

2
(h+γ). (32)

Taking into account (23), Lemma 6 guarantees the invertibility of the operators

Θp,h and Θ 1
2
(p+ξ), 1

2
(h+γ).

So, we have that Ψ−11 = Θ−1p,h and by (32), the relation

(Ψ1 + Ψ2)
−1 =

1

2
Θ−11

2
(p+ξ), 1

2
(h+γ)

is true.
Lemma 6 also ensures the positivity of the inverse operators in the sense that

Θ−1p,h
(
W++

)
⊂ W+,

Θ−11
2
(p+ξ), 1

2
(h+γ)

(
W++

)
⊂ W+

and, hence, inclusions (11), (12) hold.
Finally, in view of assumption (25), we see that relation (13) holds with F, Ψ1, and Ψ2 given

by (26), (28), (29) with respect to the cones K1 and K2 defined by (31).
Applying Theorem 1, we establish the unique solvability of the boundary value problem (1),

(2) for arbitrary r ∈ L1.

We complete the proof of Theorem 2.
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7. Unique solvability conditions for the linear FFDE.
Theorem 3. Assume that there exist some linear operators p = (pk)

n
k=1 : W → L1, ξ =

= (ξk)
n
k=1 : W → L1 which satisfy inclusions

p ∈ Sa,φ,
1

2
(p+ ξ) ∈ Sa,φ,

and such that for arbitrary function z = (zk)
n
k=1 : Ia → Rn from W+ the inequalities

(ξkz)(t) ≤ (lkz)(t) ≤ (pkz)(t), t ∈ Ia, k = 1, 2, . . . , n, (33)

hold.
Then the non-local linear boundary-value problem (2) for FFDE (1) has a unique solution

for an arbitrary function r ∈ L1.

Proof. It is easy to see, that inequality (33) is simplest case of (25) with linear operator l :
W → L1, absolutely continuous function u− v = z ∈ W+. Then we can apply Theorem 2 with
linear functionals γ = h = φ.

Theorem 3 is proved.
8. Conclusions. Herewe can conclude that using theKrasnoselskii Theorem (see Theorem2)

is a perspective method for obtaining the general conditions on the unique solvability of the
(non)linear FFDE. It was shown that the set defined by (5) is normed and reproducing cone in
the space absolutely continuous functions (see Lemma 4). Never the less, the question of proper
establishing the exact conditions on the unique solvability of the (non)linear FFDE is still open.
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9. Z. Opluštil, J. Šremr, On a non-local boundary value problem for linear functional differential equations,
Electron. J. Qual. Theory Differ. Equ., 2009, Paper No. 36, (2009).
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